【題目】如圖,小王在長江邊某瞭望臺D,測得江面上的漁船A的俯角為40°,DE=3,CE=2,CE平行于江面AB,迎水坡BC的坡度i=10.75,坡長BC=10,則此時AB的長約為__.(參考數(shù)據(jù):sin 40°≈0.64,cos 40°≈0.77,tan 40°≈0.84)

【答案】5.1.

【解析】

延長DEAB延長線于點P,作CQAP,可得CE=PQ=2、CQ=PE,由坡度i=1:0.75,可設CQ=4x、BQ=3x,根據(jù)BQ2+CQ2=BC2求得x的值,即可知DP=11,由AP的長以及AB=AP-BQ-PQ可得答案.

如圖,延長DEAB延長線于點P,作CQAP于點Q,

CEAP,

DPAP

∴四邊形CEPQ為矩形,

CE=PQ=2,CQ=PE,

i= ,

∴設CQ=4xBQ=3x,

可得, ,

解得:x=2x=2(舍去),

CQ=PE=8,BQ=6,

DP=DE+PE=11,

RtADP,,

AB=APBQPQ=13.162=5.1,

故答案為:5.1

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】對于代數(shù)式ax2+bx+c(a≠0),下列說法正確的是( )

①如果存在兩個實數(shù)p≠q,使得ap2+bp+c=aq2+bq+c,則a+bx+c=a(x-p)(x-q)

②存在三個實數(shù)m≠n≠s,使得am2+bm+c=an2+bn+c=as2+bs+c

③如果ac<0,則一定存在兩個實數(shù)m<n,使am2+bm+c<0<an2+bn+c

④如果ac>0,則一定存在兩個實數(shù)m<n,使am2+bm+c<0<an2+bn+c

A. B. ①③ C. ②④ D. ①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+ca≠0)的圖象經(jīng)過M1,0)和N3,0)兩點,且與y軸交于D0,3),直線l是拋物線的對稱軸.

1)求該拋物線的解析式.

2)若過點A﹣1,0)的直線AB與拋物線的對稱軸和x軸圍成的三角形面積為6,求此直線的解析式.

3)點P在拋物線的對稱軸上,⊙P與直線ABx軸都相切,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A(1,4)和點B(5,1)在平面直角坐標系中的位置如圖所示:

(1)點A1、B1分別為點A、B關(guān)于y軸的對稱點,請畫出四邊形AA1B1B,并寫出A1、B1的坐標;

(2)在(1)的條件下,畫一條過四邊形AA1B1B的一個頂點的線段,將四邊形AA1B1B分成兩個圖形,并且使分得的圖形中的一個是軸對稱圖形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC,AB、AC的垂直平分線的交點D恰好落在BC邊上

(1)判斷ABC的形狀

(2)若點A在線段DC的垂直平分線上,求的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】的三邊長分別為

的取值范圍;

的周長為偶數(shù)時,求;

為等腰三角形,求

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖①②,銳角的正弦值和余弦值都隨著銳角的變化而變化.試探索隨著銳角度數(shù)的增大,它的正弦值和余弦值變化的規(guī)律.

(2)根據(jù)你探索到的規(guī)律,試比較18°,34°,50°,62°,88°這些銳角的正弦值的大小和余弦值的大小.

(3)比較大小(在橫線上填寫“<”“>”或“=”):

若α=45°,則sin α    cos α;

若α<45°,則sin α    cos α;

若α>45°,則sin α    cos α.

(4)利用互為余角的兩個角的正弦和余弦的關(guān)系,試比較下列正弦值和余弦值的大小:sin 10°,cos 30°,sin 50°,cos 70°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD中,BE平分∠DBC且交CD邊于點E,將△BCE繞點C順時針旋轉(zhuǎn)到△DCF的位置,并延長BE交DF于點G.

(1)求證:△BDG∽△DEG;

(2)若EGBG=4,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,AB=AC,DE分別在邊AB、AC上,且滿足AD=AE.下列結(jié)論中:①;②AO平分∠BAC;③OB=OC;④AOBC;⑤若,則;其中正確的有( )

A. 2B. 3C. 4D. 5

查看答案和解析>>

同步練習冊答案