【題目】如圖,已知∠ADC=90°,AD=8,CD=6,AB=26,BC=24.
(1)試說明:△ABC是直角三角形.
(2)請(qǐng)求圖中陰影部分的面積.
【答案】(1)證明見解析;(2)S陰影=96.
【解析】試題分析:(1)先根據(jù)勾股定理求出AC的長(zhǎng),再根據(jù)勾股定理的逆定理即可證明△ABC為直角三角形;(2)根據(jù)S陰影=SRt△ABC-SRt△ACD,利用三角形的面積公式計(jì)算即可求解.
試題解析:(1)∵在Rt△ADC中,∠ADC=90°,AD=8,CD=6,
∴AC2=AD2+CD2=82+62=100,
∴AC=10(取正值).
在△ABC中,∵AC2+BC2=102+242=676,AB2=262=676,
∴AC2+BC2=AB2,
∴△ABC為直角三角形;
(2)S陰影=SRt△ABC﹣SRt△ACD
=×10×24﹣×8×6=96.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一個(gè)幾何體的形狀為直三棱柱,右圖是它的主視圖和左視圖.
(1)請(qǐng)補(bǔ)畫出它的俯視圖,并標(biāo)出相關(guān)數(shù)據(jù);
(2)根據(jù)圖中所標(biāo)的尺寸(單位:厘米),計(jì)算這個(gè)幾何體的全面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是邊長(zhǎng)為2的等邊三角形,點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn),連接,將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到線段,連接在點(diǎn)運(yùn)動(dòng)過程中,線段的最小值為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】蔬菜基地種植了娃娃菜和油菜兩種蔬菜共畝,設(shè)種植娃娃菜畝,總收益為萬元,有關(guān)數(shù)據(jù)見下表:
成本(單位:萬元/畝) | 銷售額(單位:萬元/畝) | |
娃娃菜 | 2.4 | 3 |
油菜 | 2 | 2.5 |
(1)求關(guān)于的函數(shù)關(guān)系式(收益 = 銷售額 – 成本);
(2)若計(jì)劃投入的總成本不超過萬元,要使獲得的總收益最大,基地應(yīng)種植娃娃菜和油菜各多少畝?
(3)已知娃娃菜每畝地需要化肥kg,油菜每畝地需要化肥kg,根據(jù)(2)中的種植畝數(shù),基地計(jì)劃運(yùn)送所需全部化肥,為了提高效率,實(shí)際每次運(yùn)送化肥的總量是原計(jì)劃的倍,結(jié)果運(yùn)送完全部化肥的次數(shù)比原計(jì)劃少次,求基地原計(jì)劃每次運(yùn)送多少化肥.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:矩形,點(diǎn)在的延長(zhǎng)線上,連接,,且,的平分線交于點(diǎn).
(1)如圖1,求的大。
(2)如圖2,過點(diǎn)作交的延長(zhǎng)線于點(diǎn),求證:;
(3)如圖3,在(2)的條件下,交于點(diǎn),點(diǎn)為的中點(diǎn),連接交于點(diǎn),點(diǎn)在上,且,連接,且.延長(zhǎng)交于點(diǎn),連接,若的周長(zhǎng)與的周長(zhǎng)的差為2,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D,E分別是不等邊△ABC(即AB,BC,AC互不相等)的邊AB,AC的中點(diǎn).點(diǎn)O是△ABC所在平面上的動(dòng)點(diǎn),連接OB,OC,點(diǎn)G,F分別是OB,OC的中點(diǎn),順次連接點(diǎn)D,G,F,E.
(1)如圖,當(dāng)點(diǎn)O在△ABC的內(nèi)部時(shí),求證:四邊形DGFE是平行四邊形;
(2)若四邊形DGFE是菱形,則OA與BC應(yīng)滿足怎樣的數(shù)量關(guān)系?(直接寫出答案,不需要說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在同一平面內(nèi),兩條平行景觀長(zhǎng)廊l1和l2間有一條“U”形通道,其中AB段與景觀長(zhǎng)廊l1成45°角,長(zhǎng)為20m;BC段與景觀長(zhǎng)廊垂直,長(zhǎng)為10m,CD段與景觀長(zhǎng)廊l2成60°角,長(zhǎng)為10m,求兩景觀長(zhǎng)廊間的距離(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知頂點(diǎn)為(﹣3,﹣6)的拋物線y=ax2+bx+c經(jīng)過點(diǎn)(﹣1,﹣4),則下列結(jié)論中錯(cuò)誤的是( 。
A. b2>4ac
B. ax2+bx+c≥﹣6
C. 若點(diǎn)(﹣2,m),(﹣5,n)在拋物線上,則m>n
D. 關(guān)于x的一元二次方程ax2+bx+c=﹣4的兩根為﹣5和﹣1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com