【題目】如圖,ABC中,正方形DEFG的頂點(diǎn)D,G分別在AB,AC上,頂點(diǎn)E,F(xiàn)BC上.若ADG、BED、CFG的面積分別是1、3、1,則正方形的邊長(zhǎng)為(

A. B. C. 2 D. 2

【答案】C

【解析】

過(guò)點(diǎn)AAMBC于點(diǎn)M,AMDG于點(diǎn)N,根據(jù)正方形的性質(zhì)結(jié)合三角形的面積可得出AN=CF、BE=3CF,由DGEF可得出ADG∽△ABC,根據(jù)相似三角形的性質(zhì)可求出DG=2CF,再由ADG的面積是1,即可求出DG的長(zhǎng)度,此題得解.

過(guò)點(diǎn)AAMBC于點(diǎn)M,AMDG于點(diǎn)N,如圖所示.

∵四邊形DEFG為正方形,

DGEF,DG=DE=GF=EF.

根據(jù)題意得:DGAN=1, DEBE=3,GFCF=1,

AN=CF,BE=3CF.

DGEF,

∴△ADG∽△ABC,

,即,

DG=2CF.

DGAN=×DGDG=1,

DG=2.

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B分別在x軸、y軸上,線段OAOB的長(zhǎng)(OA<OB)是方程組的解,點(diǎn)C是直線與直線AB的交點(diǎn),點(diǎn)D在線段OC上,OD=

(1)求點(diǎn)C的坐標(biāo);

(2)求直線AD的解析式;

(3)P是直線AD上的點(diǎn),在平面內(nèi)是否存在點(diǎn)Q,使以O、A、PQ為頂點(diǎn)的四邊形是菱形(鄰邊相等的平行四邊形)?若存在,請(qǐng)寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠BAC=120°,將ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)一定角度(小于360°)得到B′AC′.

(1)若點(diǎn)B′落在線段AC上,在圖中畫出B′AC′,并直接寫出當(dāng)AC=4時(shí),CC′的值;

(2)若∠ACB=20°,旋轉(zhuǎn)后,B′C′AC,請(qǐng)直接寫出旋轉(zhuǎn)角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,,,是對(duì)應(yīng)邊,,,交于點(diǎn)

1)用表示的三個(gè)內(nèi)角;

2)當(dāng)時(shí),求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四邊形ABCD中,∠ABC=∠DCB90°,ABBC.過(guò)點(diǎn)BBFAD,垂足為點(diǎn)F,

1)求證:∠DAB=∠FBC;

2)點(diǎn)E為線段CD上的一點(diǎn),連接AEBFG,若∠BAE+2EAD90°,AG1,AB5,求線段CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,反比例函數(shù)的圖象過(guò)點(diǎn)A(1,6).

(1)求反比例函數(shù)的表達(dá)式;

(2)過(guò)點(diǎn)A的直線與反比例函數(shù) 圖象的另一個(gè)交點(diǎn)為B,與x軸交于點(diǎn)P,若AP=2PB,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(,0),AB,AB=10,點(diǎn)C0,b,,b滿足.點(diǎn)Pt,0)是線段AO上一點(diǎn)(不包含A,O

1)當(dāng)t=5時(shí),求PBPC的值;

2)當(dāng)PC+PB最小時(shí),求t的值;

3)請(qǐng)根據(jù)以上的啟發(fā),解決如下問(wèn)題:正數(shù)m,n滿足m+n=10,且正數(shù)=,則正數(shù)的最小值=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在底面是正三角形的三棱柱中,AB,A'B'垂直于投影面PAB,A'B'上的高所在截面平行于投影面,若已知CD的投影長(zhǎng)為2 cm,CC'的投影長(zhǎng)為6 cm.

(1)畫出三棱柱在投影面P上的正投影;

(2)求出三棱柱的表面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,平面直角坐標(biāo)系中,B、C兩點(diǎn)的坐標(biāo)分別為B0,3)和C0,﹣),點(diǎn)Ax軸正半軸上,且滿足∠BAO30°

1)過(guò)點(diǎn)CCEAB于點(diǎn)E,交AO于點(diǎn)F,點(diǎn)G為線段OC上一動(dòng)點(diǎn),連接GF,將OFG沿FG翻折使點(diǎn)O落在平面內(nèi)的點(diǎn)O處,連接OC,求線段OF的長(zhǎng)以及線段OC的最小值;

2)如圖2,點(diǎn)D的坐標(biāo)為D(﹣1,0),將BDC繞點(diǎn)B順時(shí)針旋轉(zhuǎn),使得BCAB于點(diǎn)B,將旋轉(zhuǎn)后的BDC沿直線AB平移,平移中的BDC記為BDC,設(shè)直線BCx軸交于點(diǎn)MN為平面內(nèi)任意一點(diǎn),當(dāng)以B、D、M、N為頂點(diǎn)的四邊形是菱形時(shí),求點(diǎn)M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案