【題目】嘉淇同學(xué)要證明命題“兩組對邊分別相等的四邊形是平行四邊形”是正確的,她先用尺規(guī)作出了如圖1的四邊形ABCD,并寫出了如下不完整的已知和求證.
已知:如圖1,在四邊形ABCD中,BC=AD,AB=
求證:四邊形ABCD是 四邊形.
(1)在方框中填空,以補(bǔ)全已知和求證;
(2)按嘉淇同學(xué)的思路寫出證明過程;
(3)用文字?jǐn)⑹鏊C命題的逆命題.
【答案】(1)見解析;(2)見解析
【解析】試題分析:(1)命題的題設(shè)為“兩組對邊分別相等的四邊形”,結(jié)論是“是平行四邊形”,即可得到結(jié)論;
(2)連接BD,利用SSS定理證明△ABD≌△CDB可得∠ADB=∠DBC,∠ABD=∠CDB,進(jìn)而可得AB∥CD,AD∥CB,根據(jù)兩組對邊分別平行的四邊形是平行四邊形可得四邊形ABCD是平行四邊形;
(3)把命題“兩組對邊分別相等的四邊形是平行四邊形”的題設(shè)和結(jié)論對換可得平行四邊形兩組對邊分別相等.
試題解析:解:(1)已知:如圖1,在四邊形ABCD中,BC=AD,AB=CD.
求證:四邊形ABCD是平行四邊形.
(2)證明:連接BD.
在△ABD和△CDB中,∵AB=CD,AD=BC,BD=DB,∴△ABD≌△CDB(SSS),
∴∠ADB=∠DBC,∠ABD=∠CDB,∴AB∥CD,AD∥CB,∴四邊形ABCD是平行四邊形;
(3)用文字?jǐn)⑹鏊C命題的逆命題為:
平行四邊形兩組對邊分別相等.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AM∥CN,點(diǎn)B為平面內(nèi)一點(diǎn),AB⊥BC于B.
(1)如圖1,直接寫出∠A和∠C之間的數(shù)量關(guān)系________;
(2)如圖2,過點(diǎn)B作BD⊥AM于點(diǎn)D,求證:∠ABD=∠C;
(3)如圖3,在(2)問的條件下,點(diǎn)E、F在DM上,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是一種包裝盒的表面展開圖,將它圍起來可得到一個(gè)幾何體的模型.
(1)這個(gè)幾何體模型的名稱是 .
(2)如圖2是根據(jù)a,b,h的取值畫出的幾何體的主視圖和俯視圖(圖中實(shí)線表示的長方形),請?jiān)诰W(wǎng)格中畫出該幾何體的左視圖.
(3)若h=a+b,且a,b滿足a2+b2﹣a﹣6b+10=0,求該幾何體的表面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,用錘子以相同的力將鐵釘垂直釘入木塊,隨著鐵釘?shù)纳钊,鐵釘所受的阻力也越來越大.當(dāng)鐵釘未進(jìn)入木塊部分長度足夠時(shí),每次釘入木塊的鐵釘長度是前一次的,已知這個(gè)鐵釘被敲擊3次后全部進(jìn)入木塊(木塊足夠厚),且第一次敲擊后,鐵釘進(jìn)入木塊的長度是a(cm),若鐵釘總長度為6(cm),則a的取值范圍是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA、PB分別切⊙O于A、B,連接PO、AB相交于D,C是⊙O上一點(diǎn),∠C=60°.
(1)求∠APB的大;
(2)若PO=20cm,求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種子商店銷售“黃金一號(hào)”玉米種子,為惠民促銷,推出兩種銷售方案供采購者選擇. 方案一:每千克種子價(jià)格為4元,無論購買多少均不打折;
方案二:購買3千克以內(nèi)(含3千克)的價(jià)格為每千克5元,若一次性購買超過3千克的,則超過3千克的部分的種子價(jià)格打7折.
(1)請分別求出方案一和方案二中購買的種子數(shù)量x(千克)和付款金額y(元)之間的函數(shù)關(guān)系式;
(2)若你去購買一定量的種子,你會(huì)怎樣選擇方案?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△DEF是兩個(gè)全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的頂點(diǎn)E與△ABC的斜邊BC的中點(diǎn)重合.將△DEF繞點(diǎn)E旋轉(zhuǎn),旋轉(zhuǎn)過程中,線段DE與線段AB相交于點(diǎn)P,線段EF與射線CA相交于點(diǎn)Q.
(1)如圖①,當(dāng)點(diǎn)Q在線段AC上,且AP=AQ時(shí),求證:△BPE≌△CQE;
(2)如圖②,當(dāng)點(diǎn)Q在線段CA的延長線上時(shí),求證:△BPE∽△CEQ;并求當(dāng)BP=a,CQ= 時(shí),P、Q兩點(diǎn)間的距離 (用含a的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一動(dòng)點(diǎn)從原點(diǎn)O出發(fā),沿著箭頭所示方向,每次移動(dòng)1個(gè)單位,依次得到點(diǎn),,,,,,···,則點(diǎn)的坐標(biāo)是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)國家要求中小學(xué)生每天鍛煉1小時(shí)的號(hào)召,某校開展了形式多樣的“陽光體育運(yùn)動(dòng)”活動(dòng),小明對某班同學(xué)參加鍛煉的情況進(jìn)行了統(tǒng)計(jì),并繪制了下面的圖1和圖2.
(1)該班共有多少名學(xué)生?
(2)請?jiān)趫D1中將“乒乓球”部分的圖形補(bǔ)充完整;
(3)若全年級共有1200名學(xué)生,估計(jì)全年級參加乒乓球活動(dòng)的學(xué)生有多少名?
(4)求出扇形統(tǒng)計(jì)圖中表示“足球”的扇形的圓心角度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com