【題目】【課本引申】

我們知道,三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和.那么,三角形的一個內(nèi)角與它不相鄰的兩個外角的和之間存在怎樣的數(shù)量關(guān)系呢?

【嘗試探究】

(1)如圖1,∠DBC與∠ECB分別為△ABC的兩個外角,試探究∠A與∠DBC+∠ECB之間存在怎樣的數(shù)量關(guān)系?為什么?

【拓展運用】

(2)如圖2,在△ABC紙片中剪去△CED,得到四邊形ABDE,若∠1+∠2=230°,則剪掉的∠C=_________;

(3)小明聯(lián)想到了曾經(jīng)解決的一個問題:如圖3,在△ABC中,BP、CP分別平分外角∠DBC、∠ECB,∠P與∠A有何數(shù)量關(guān)系?請直接寫出答案_

(4)如圖4,在四邊形ABCD中,BP、CP分別平分外角∠EBC、∠FCB,∠P與∠A、∠D有何數(shù)量關(guān)系?為什么?(若需要利用上面的結(jié)論說明,可直接使用,不需說明理由)

【答案】(1)∠DBC+∠ECB =180°+∠A (2)50°(3)∠P=90°-∠A (4)∠BAD+∠CDA=360°-2∠P.

【解析】試題分析:(1)根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和表示出∠DBC+∠ECB,再利用三角形內(nèi)角和定理整理即可得解;
(2)根據(jù)(1)的結(jié)論整理計算即可得解;
(3)表示出∠DBC+∠ECB,再根據(jù)角平分線的定義求出∠PBC+∠PCB,然后利用三角形內(nèi)角和定理列式整理即可得解;
(4)延長BA、CD相交于點Q,先用∠Q表示出∠P,再用(1)的結(jié)論整理即可得解;

試題解析:

1DBC+ECB=180°ABC+180°ACB

=360°(ABC+ACB)

=360°(180°A)

=180°+A

250°

3P=90°A

4)延長BA、CD交于點Q,

P=90°Q,∴∠Q=180°2P

∴∠BAD+CDA=180°+Q=180°+180°2P=360°2P

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,∠1∠2,則不一定能使△ABD≌△ACD的條件是 ( )

A. ABAC B. BDCD C. ∠B∠C D. ∠BDA∠CDA

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)yk0)與一次函數(shù)ykxb相交于A、B兩點,若點A的坐標為(1,7).

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)求ABO的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,過點的直線與直線;相交于點

)求直線的表達式.

)過動點且垂于軸的直線與、的交點分別為,,當點位于點上方時,寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料,并解決問題 如圖1等邊ABC內(nèi)有一點P,若點P到頂點A,BC的距離分別為6,810,APB的度數(shù)?

由于PA,PBPC不在同一個三角形中,為了解決本題我們可以將ABP繞頂點A旋轉(zhuǎn)到ACP此時ACPABP全等,這樣就可以利用全等三角形知識,將三條線段的長度轉(zhuǎn)化到同一個三角形中從而求出APB的度數(shù)

1)請你按上述方法求出圖1APB的度數(shù);

2)請你利用第(1)題的解答思想方法解答下面問題如圖2,已知ABC,CAB=90°,AB=AC,E、FBC上的點,EAF=45°,求證EF2=BE2+FC2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在△ABC中,∠ABC與∠ACB的平分線相交于點P

(1)如果∠A=80°,求∠BPC的度數(shù);

(2)如圖②,作△ABC外角∠MBC,∠NCB的角平分線交于點Q,試探索∠Q∠A之間的數(shù)量關(guān)系.

(3)如圖③,延長線段BP、QC交于點E,△BQE中,存在一個內(nèi)角等于另一個內(nèi)角的2倍,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在某市組織的大型商業(yè)演出活動中,對團體購買門票實行優(yōu)惠,決定在原定票價基礎(chǔ)上每張降價80元,這樣按原定票價需花費6000元購買的門票張數(shù),現(xiàn)在只花費了4800元.

1)求每張門票的原定票價;

2)根據(jù)實際情況,活動組織單位決定對于個人購票也采取優(yōu)惠政策,原定票價經(jīng)過連續(xù)二次降價后降為324元,求平均每次降價的百分率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明用的練習(xí)本可以到甲超市購買,也可以到乙超市購買已知兩超市的標價都是每本1,但甲超市的優(yōu)惠條件是購買10本以上,從第11本開始按標價的70%乙超市的優(yōu)惠條件是從第1本開始就按標價的85%

(1)當小明要買20本時到哪家超市購買較省錢?

(2)寫出甲超市中,收款y()與購買本數(shù)x()(x10)的關(guān)系式

(3)小明現(xiàn)有24元錢最多可買多少本練習(xí)本?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,DBC邊上的一點,連接AD,取AD的中點E,過點ABC的平行線與CE的延長線交于點F,連接DF

1)求證:AF=DC;

2)若AD=CF,試判斷四邊形AFDC是什么樣的四邊形?并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案