【題目】如圖,△ABC中,AD是高,AE、BF是角平分線,它們相交于點(diǎn)O,∠BAC=60°,∠C=50°,求∠DAC及∠BOA的度數(shù).
【答案】∠DAC=40°,∠BOA=115°
【解析】試題分析:在Rt△ACD中,根據(jù)兩銳角互余得出∠DAC度數(shù);△ABC中由內(nèi)角和定理得出∠ABC度數(shù),再根據(jù)AE,BF是角平分線可得∠BAO、∠ABO,最后在△ABO中根據(jù)內(nèi)角和定理可得答案.
解:∵AD是BC邊上的高,
∴∠ADC=90°,
又∵∠C=50°,
∴在△ACD中,∠DAC=90°-∠C=40°,
∵∠BAC=60°,∠C=50°,
∴在△ABC中,∠ABC=180°-∠BAC-∠C=70°,
又∵AE、BF分別是∠BAC 和∠ABC的平分線,
∴∠BAO=∠BAC=30°,∠ABO=∠ABC=35°,
∴∠BOA=180°-∠BAO -∠ABO =180°-30°-35°=115°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l和雙曲線 交于A,B兩點(diǎn),P是線段AB上的點(diǎn)(不與A,B重合),過(guò)點(diǎn)A,B,P分別向x軸作垂線,垂足分別為C,D,E,連接OA,OB,0P,設(shè)△AOC的面積為S1、△BOD的面積為S2、△POE的面積為S3 , 則( )
A.S1<S2<S3
B.S1>S2>S3
C.S1=S2>S3
D.S1=S2<S3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)用不同的方法計(jì)算如圖中陰影部分的面積得到的等式: ;
(2)如圖是兩個(gè)邊長(zhǎng)分別為、、的直角三角形和一個(gè)兩條直角邊都是的直角三角形拼成,試用不同的方法計(jì)算這個(gè)圖形的面積,你能發(fā)現(xiàn)什么?說(shuō)明理由;
(3)根據(jù)上面兩個(gè)結(jié)論,解決下面問(wèn)題:若如圖中,直角三邊a、、c,
①滿足,ab=18,求的值;
②在①的條件下,若點(diǎn)是邊上的動(dòng)點(diǎn),連接,求線段的最小值;
③若,,且,則的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“一帶一路”讓中國(guó)和世界更緊密,“中歐鐵路”為了安全起見(jiàn)在某段鐵路兩旁安置了兩座可旋轉(zhuǎn)探照燈.如圖1所示,燈A射線從AM開(kāi)始順時(shí)針旋轉(zhuǎn)至AN便立即回轉(zhuǎn),燈B射線從BP開(kāi)始順時(shí)針旋轉(zhuǎn)至BQ便立即回轉(zhuǎn),兩燈不停交叉照射巡視.若燈A轉(zhuǎn)動(dòng)的速度是每秒2度,燈B轉(zhuǎn)動(dòng)的速度是每秒1度.假定主道路是平行的,即PQ∥MN,且∠BAM:∠BAN=2:1.
(1)填空:∠BAN=_____°;
(2)若燈B射線先轉(zhuǎn)動(dòng)30秒,燈A射線才開(kāi)始轉(zhuǎn)動(dòng),在燈B射線到達(dá)BQ之前,A燈轉(zhuǎn)動(dòng)幾秒,兩燈的光束互相平行?
(3)如圖2,若兩燈同時(shí)轉(zhuǎn)動(dòng),在燈A射線到達(dá)AN之前.若射出的光束交于點(diǎn)C,過(guò)C作∠ACD交PQ于點(diǎn)D,且∠ACD=120°,則在轉(zhuǎn)動(dòng)過(guò)程中,請(qǐng)?zhí)骄?/span>∠BAC與∠BCD的數(shù)量關(guān)系是否發(fā)生變化?若不變,請(qǐng)求出其數(shù)量關(guān)系;若改變,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在學(xué)習(xí)了正方形后,數(shù)學(xué)小組的同學(xué)對(duì)正方形進(jìn)行了探究,發(fā)現(xiàn):
(1)如圖1,在正方形ABCD中,點(diǎn)E為BC邊上任意一點(diǎn)(點(diǎn)E不與B、C重合),點(diǎn)F在線段AE上,過(guò)點(diǎn)F的直線MN⊥AE,分別交AB、CD于點(diǎn)M、N . 此時(shí),有結(jié)論AE=MN,請(qǐng)進(jìn)行證明;
(2)如圖2:當(dāng)點(diǎn)F為AE中點(diǎn)時(shí),其他條件不變,連接正方形的對(duì)角線BD, MN 與BD交于點(diǎn)G,連接BF,此時(shí)有結(jié)論:BF= FG,請(qǐng)利用圖2做出證明.
(3)如圖3:當(dāng)點(diǎn)E為直線BC上的動(dòng)點(diǎn)時(shí),如果(2)中的其他條件不變,直線MN分別交直線AB、CD于點(diǎn)M、N,請(qǐng)你直接寫(xiě)出線段AE與MN之間的數(shù)量關(guān)系、線段BF與FG之間的數(shù)量關(guān)系.
圖1 圖2 圖3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在長(zhǎng)方形ABCD中,AB=4,AD=6.延長(zhǎng)BC到點(diǎn)E,使CE=3,連接DE,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒1個(gè)單位的速度沿BC﹣CD﹣DA向終點(diǎn)A運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t的值為__________秒時(shí).△ABP和△DCE全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一副直角三角板按如圖所示放置,點(diǎn)E、F分別在線段AB和線段AC上,∠DEF=∠BAC=90°,∠D=45°,∠C=30°.
(1)若∠DEA=28°,求∠DFA的度數(shù).
(2)當(dāng)∠DFC等于多少度時(shí),EF∥BC?說(shuō)說(shuō)你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,PA是⊙O的切線,A為切點(diǎn),AC是⊙O的直徑,AB是弦,PA∥BC交AB于點(diǎn)D.
(1)求證:PB是⊙O的切線.
(2)當(dāng)BC=2 ,cos∠AOD= 時(shí),求PB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則在①a<0,②b>0,③c<0,④b2﹣4ac>0中錯(cuò)誤的個(gè)數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com