【題目】如圖,直線y=-x+1與x軸.y軸分別交于A.B兩點(diǎn),拋物線y=-x2+bx+c經(jīng)過點(diǎn)B,且與直線AB的另一交點(diǎn)為C(4,n).
(1)求n的值及該拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)設(shè)拋物線上的一個(gè)動(dòng)點(diǎn)P的橫坐標(biāo)為t(0<t<4),過點(diǎn)P作PD⊥AB于點(diǎn)D,作PE∥y軸交直線AB于點(diǎn)E,
①y軸上存在點(diǎn)Q,使得四邊形QEPB是矩形,請求出點(diǎn)Q的坐標(biāo);
②求線段PD的長的最大值;
③當(dāng)t為何值時(shí),點(diǎn)D為BE的中點(diǎn).
【答案】(1)n=-2;y=x2+x+1;(2)①點(diǎn)Q的坐標(biāo)為;②PD最大=;③當(dāng)t=時(shí),E為BE的中點(diǎn).
【解析】
(1)把x=4.y=n代入中,即可求出n的值,從而求出中b,c的值;
(2)①由P點(diǎn)的橫坐標(biāo)為t,則可知P點(diǎn)的縱坐標(biāo)為,E點(diǎn)的坐標(biāo)為,而四邊形BPEQ為矩形,點(diǎn)B的坐標(biāo)為(0,1),則可求得,解得t值;
②易證△PED∽△EBQ,則有,PD=,得出關(guān)于t的二次函數(shù),即可求最大值;
③點(diǎn)D為BE的中點(diǎn),即DE=BE,代入②中,即求得此時(shí)的t值.
(1)把x=4.y=n代入中,得:n=×4+1=-2
∴點(diǎn)C的坐標(biāo)為(4,-2)
將點(diǎn)C(4,-2)和(0,1)代入,得:-8+4b+1=-2
解得:b=
∴y=x2+x+1
(2)①∵P點(diǎn)的橫坐標(biāo)為t,則P點(diǎn)的縱坐標(biāo)為,E點(diǎn)的縱坐標(biāo)為,
∵四邊形BPEQ為矩形,故PB⊥y軸
∵點(diǎn)B的坐標(biāo)為(0,1)
∴,
解得:t1=0(舍去),t2=
∴t=,
則點(diǎn)E的縱坐標(biāo)為:
∴點(diǎn)Q的坐標(biāo)為
②∵PE=t2+t+1﹣(﹣t+1)=
QE=t
QB=
BE===
∵∠BQE=∠PDE=90°
∠PEB=∠EBQ
∴△PED∽△EBQ
∴,得=
PD=
∵
∴PD有最大值
PD最大==
③∵點(diǎn)D為BE的中點(diǎn)
∴由,DE=BE,得
代入得=
整理得,25t=-12t2+48t
解得t1=0(舍去),t2=
∴當(dāng)t=時(shí),E為BE的中點(diǎn)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】坐火車從上海到婁底,高鐵G1329次列車比快車K575次列車少需要9小時(shí),已知上海到婁底的鐵路長約1260千米,G1329的平均速度是K575的2.5倍.
(1)求K575的平均速度;
(2)高鐵G1329從上海到婁底只需幾小時(shí)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四邊形ABCD中,AB∥CD,∠B=90°,AC=AD.動(dòng)點(diǎn)P從點(diǎn)B出發(fā)沿折線B﹣A﹣D﹣C方向以1單位/秒的速度勻速運(yùn)動(dòng),在整個(gè)運(yùn)動(dòng)過程中,△BCP的面積S與運(yùn)動(dòng)時(shí)間t(秒)的函數(shù)圖象如圖2所示,則AD等于( 。
A. 5B. C. 8D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班“數(shù)學(xué)興趣小組”對函數(shù)y=﹣x2+2|x|+1的圖象和性質(zhì)進(jìn)行了探究,探究過程如下,請補(bǔ)充完整.
(1)自變量x的取值范圍是全體實(shí)數(shù),x與y的幾組對應(yīng)值列表如下:
x | … | ﹣3 | ﹣ | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … | |
y | … | ﹣2 | ﹣ | m | 2 | 1 | 2 | 1 | ﹣ | ﹣2 | … |
其中,m= .
(2)根據(jù)上表數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),畫出了函數(shù)圖象的一部分,請畫出該函數(shù)圖象的另一部分.
(3)觀察函數(shù)圖象,寫出兩條函數(shù)的性質(zhì).
(4)進(jìn)一步探究函數(shù)圖象發(fā)現(xiàn):
①方程﹣x2+2|x|+1=0有 個(gè)實(shí)數(shù)根;
②關(guān)于x的方程﹣x2+2|x|+1=a有4個(gè)實(shí)數(shù)根時(shí),a的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)組織“獻(xiàn)愛心”捐款活動(dòng),并對部分捐款戶數(shù)進(jìn)行調(diào)查和分組統(tǒng)計(jì),數(shù)據(jù)整理成如下統(tǒng)計(jì)圖表(圖中信息不完整).
捐款戶數(shù)分組統(tǒng)計(jì)表
組別 | 捐款額(x)元 | 戶數(shù) |
A | 1≤x<100 | 2 |
B | 100≤x<200 | 10 |
C | 200≤x<300 | c |
D | 300≤x<400 | d |
E | x≥400 | e |
請結(jié)合以上信息解答下列問題:
(1)本次調(diào)查的樣本容量是______;
(2)d=______,并補(bǔ)全圖1;
(3)圖2中,“B”所對應(yīng)扇形的圓心角為______度;
(4)若該社區(qū)有500戶住戶,根據(jù)以上信息估計(jì)全社區(qū)捐款不少于300元的戶數(shù)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 兩支探險(xiǎn)隊(duì)進(jìn)行探險(xiǎn)活動(dòng),如圖,甲隊(duì)沿與公路MN夾角為25°方向前進(jìn),乙隊(duì)沿與公路MN夾角為60°方向前進(jìn),分別經(jīng)過公路MN于A、B兩點(diǎn),且AB距離為10km,兩支探險(xiǎn)隊(duì)相遇于點(diǎn)C,則點(diǎn)C距公路MN的距離是多少?(結(jié)果精確到1km.參考數(shù)據(jù)sin25°≈0.40,cos25°≈0.90,tan25°≈0.50,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代第一部自成體系的數(shù)學(xué)專著,代表了東方數(shù)學(xué)的最高成就.它的算法體系至今仍在推動(dòng)著計(jì)算機(jī)的發(fā)展和應(yīng)用.書中記載:“今有圓材埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?”譯為:“今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸這木材,鋸口深1寸(ED=1寸),鋸道長1尺(AB=1尺=10寸)”,問這塊圓形木材的直徑是多少?”
如圖所示,請根據(jù)所學(xué)知識(shí)計(jì)算:圓形木材的直徑AC是( 。
A. 13寸 B. 20寸 C. 26寸 D. 28寸
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是甲、乙兩個(gè)圓柱形水槽的軸截面示意圖,乙槽中有一圓柱體鐵塊立放其中(圓柱形鐵塊的下底面完全落在乙槽底面上). 現(xiàn)將甲槽中的水勻速注入乙槽,甲、乙兩個(gè)水槽中水的深度y(厘米)與注水時(shí)間x(分鐘)之間的關(guān)系如圖2所示.①圖2中折線ABC表示___________槽中水的深度與注水時(shí)間之間的關(guān)系(選填“甲”或“乙”);②點(diǎn)B的縱坐標(biāo)表示的實(shí)際意義是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,取邊上一點(diǎn),連結(jié),是延長線上一點(diǎn),連結(jié)并延長,交延長線于點(diǎn).
(1)如圖1,若,,,求的長;
(2)如圖2,連結(jié),過點(diǎn)作交延長線于點(diǎn),且.求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com