【題目】如圖,已知直線分別是直線上的點(diǎn).

1)在圖1中,判斷之間的數(shù)量關(guān)系,并證明你的結(jié)論;

2)在圖2中,請你直接寫出之間的數(shù)量關(guān)系(不需要證明);

3)在圖3中,平分平分,且,求的度數(shù).

【答案】1,證明見析;(2;(3

【解析】

(1)如圖,過點(diǎn)作直線,由平行線的性質(zhì)得到,即可求得;

(2)如圖,記ABNE的交點(diǎn)為G,由平行線的性質(zhì)得∠EGM=∠DNE,由三角形外角性質(zhì)得∠BME=∠MEN+∠EGM,由此即可得到結(jié)論;

(3)由角平分線的定義設(shè),設(shè),由(1),得,由(2),得,再根據(jù),可求得,繼而可求得.

(1),證明如下:

如圖,過點(diǎn)作直線,

,

,

,

(2),理由如下:

如圖,記ABNE的交點(diǎn)為G,

∵AB//CD,

∴∠EGM=∠DNE

∠BME△EMG的外角,

BME=∠MEN+∠EGM,

∴∠MEN=∠BME-∠DNE;

(3)∵平分,

設(shè)

平分,

設(shè),

(1),得

(2),得,

,

,

,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一副三角板如圖擺放,點(diǎn)F 45°角三角板ABC的斜邊的中點(diǎn),AC4.當(dāng) 30°角三角板DEF的直角頂點(diǎn)繞著點(diǎn)F旋轉(zhuǎn)時,直角邊DFEF分別與AC,BC相交于點(diǎn) M N.在旋轉(zhuǎn)過程中有以下結(jié)論:①MFNF;②CFMN可能相等嗎;③MN 長度的最小值為 2;④四邊形CMFN的面積保持不變; CMN面積的最大值為 2.其中正確的個數(shù)是_________.(填寫序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為提高飲水質(zhì)量,越來越多的居民選購家用凈水器.我市飛龍商場抓住商機(jī),從廠家購進(jìn)了A、B兩種型號家用凈水器共100臺,A型號家用凈水器進(jìn)價是150/臺,B型號家用凈水器進(jìn)價是250/臺,購進(jìn)兩種型號的家用凈水器共用去19000 .

(1)A、B兩種型號家用凈水器各購進(jìn)了多少臺;

(2)為使每臺B型號家用凈水器的毛利潤是A型號的2倍,且保證售完這100臺家用凈水器的毛利潤不低于5600元,求每臺A型號家用凈水器的售價至少是多少元? (注: 毛利潤=售價一進(jìn)價) .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:∠MON=30°,點(diǎn)A1、A2、A3 在射線ON上,點(diǎn)B1B2、B3在射線OM上,△A1B1A2△A2B2A3、△A3B3A4均為等邊三角形,若OA1=a,則△A6B6A7的邊長為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】通過類比聯(lián)想、引申拓展研究典型題目,可達(dá)到解一題知一類的目的.下面是一個案例,請補(bǔ)充完整.

原題:如圖1,點(diǎn)EF分別在正方形ABCD的邊BC、CD上,EAF=45°,連接EF,則EFBEDF,試說明理由.

(1)思路梳理

ABCD,

ABE繞點(diǎn)A逆時針旋轉(zhuǎn)90°ADG,可使ABAD重合.

∵∠ADCB=90°

∴∠FDG=180°,點(diǎn)F、D、G共線.

根據(jù)___________,SAS

易證AFG___________AEF

,得EFBEDF

(2)類比引申

如圖2,四邊形ABCD中,ABAD,BAD=90°.點(diǎn)E、F分別在邊BC、CD上,EAF=45°.若B、D都不是直角,則當(dāng)BD滿足等量關(guān)系______________B+D=180°

時,仍有EFBEDF

(3)聯(lián)想拓展

如圖3,在ABC中,BAC=90°,ABAC,點(diǎn)D、E均在邊BC上,且DAE=45°.猜想BD、DE、EC應(yīng)滿足的等量關(guān)系,并寫出推理過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們把的圓心角所對的弧叫做的弧,則圓心角AOB的度數(shù)等于它所對的弧AB的度數(shù)記為:∠AOB .由此可知:命題圓周角的度數(shù)等于其所對的弧的度數(shù)的一半.是真命題,請結(jié)合圖形1給予證明(不要求寫已知、求證,只需直接證明),并解決以下的問題(1)和問題(2).

問題(1):如圖2,O的兩條弦ABCD相交于圓內(nèi)一點(diǎn)P,求證:∠APC (+);

問題(2):如圖3O的兩條弦AB、CD相交于圓外一點(diǎn)P,問題(1)中的結(jié)論是否成立,如果成立,給予證明;如果不成立,寫出一個類似的結(jié)論(不要求證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形(四邊相等,四個角都是直角),點(diǎn)為邊上異于點(diǎn)的一動點(diǎn),,交于點(diǎn),點(diǎn)延長線上一定點(diǎn),滿足,的延長線與交于點(diǎn),連接.

(1)判斷 三角形.

(2)求證: .

(3)探究是否為定值?如果是定值,請說明理由,并求出該定值;如果不是定值,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了解學(xué)生的課外閱讀情況,隨機(jī)抽取了50名學(xué)生,并統(tǒng)計(jì)他們平均每天的課外閱讀時間t(單位:min),然后利用所得數(shù)據(jù)繪制成如下不完整的統(tǒng)計(jì)表.

課外閱讀時間t

頻數(shù)

百分比

10≤t30

4

8%

30≤t50

8

16%

50≤t70

a

40%

70≤t90

16

b

90≤t110

2

4%

合計(jì)

50

100%

請根據(jù)圖表中提供的信息回答下列問題:

1a=   ,b=   ;

(2)將頻數(shù)分布直方圖補(bǔ)充完整;

(3)若全校有900名學(xué)生,估計(jì)該校有多少學(xué)生平均每天的課外閱讀時間不少于50min?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠A=90°,AB=ACBC=20,DEABC的中位線,點(diǎn)M是邊BC上一點(diǎn),BM=3,點(diǎn)N是線段MC上的一個動點(diǎn),連接DN,ME,DNME相交于點(diǎn)O.若OMN是直角三角形,則DO的長是______

查看答案和解析>>

同步練習(xí)冊答案