【題目】已知∠MAN=120°,AC平分∠MAN.
(1)在圖1中,若∠ABC=∠ADC=90°,求證:AB+AD=AC;
(2)在圖2中,若∠ABC+∠ADC=180°,則(1)中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由.
【答案】(1)見解析;(2)見解析.
【解析】
(1)根據(jù)角平分線的性質(zhì)可得∠DAC=∠BAC=60°,又已知∠ABC=∠ADC=90°,所以∠DCA=∠BCA=30°,根據(jù)直角三角形的性質(zhì)可證AC=2AD,AC=2AB,所以AD+AB=AC.
(2)根據(jù)已知條件可在AN上截取AE=AC,連接CE,根據(jù)AAS可證△ADC≌△EBC,得到DA=BE,所以AD+AB=AB+BE=AE,即AD+AB=AC.
解:(1)在Rt△ACD中,∠DCA=30°,Rt△ACB中,∠BCA=30°
∴AC=2AD,AC=2AB,
∴2AD=2AB
∴AD=AB
∴AD+AB=AC.
(2)(1)中的結(jié)論AD+AB=AC成立,
理由如下:如圖2,在AN上截取AE=AC,連接CE,
∵∠CAE=60°,
∴△ACE是等邊三角形,
∴∠DAC=∠CEB=60°,
∵∠ADC+∠ABC=180°,∠ABC+∠EBC=180°,
∴∠ADC=∠EBC,
∵在△ADC和△EBC中,
,
∴△ADC≌△EBC
∴DA=BE
∵△CAE為等邊三角形,
∴AC=AE,
∴AD+AB=AB+BE=AE=AC,
∴AD+AB=AC.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)校開展的數(shù)學(xué)活動課上,小明和小剛制作了一個正三樓錐(質(zhì)量均勻,四個面完全相同),并在各個面上分別標(biāo)記數(shù)字1,2,3,4,游戲規(guī)則如下每人投擲三棱錐兩次,并記錄底面的數(shù)字,如果兩次所擲數(shù)字的和為單數(shù),那么算小明贏,如果兩歡所擲數(shù)字的和為偶數(shù),那么算小明贏;
(1)請用列表或者面樹狀圍的方法表示上述游戲中的所有可能結(jié)果.
(2)請分別隸出小明和小剛能贏的概率,并判新游戲的公平性.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△DEC中,已知AB=DE,還需添加兩個條件才能使△ABC≌△DEC,不能添加的一組條件是( )
A.BC=EC,∠B=∠E
B.BC=EC,AC=DC
C.AC=DC,∠B=∠E
D.∠B=∠E,∠BCE=∠ACD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小張同學(xué)嘗試運用課堂上學(xué)到的方法,自主研究函數(shù)y=的圖象與性質(zhì).下面是小張同學(xué)在研究過程中遇到的幾個問題,現(xiàn)由你來完成:
(1)函數(shù)y=自變量的取值范圍是 ;
(2)下表列出了y與x的幾組對應(yīng)值:
x | … | ﹣2 | ﹣ | m | ﹣ | ﹣ | 1 | 2 | … | |||
y | … | 1 | 4 | 4 | 1 | … |
表中m的值是 ;
(3)如圖,在平面直角坐標(biāo)系xOy中,描出以表中各組對應(yīng)值為坐標(biāo)的點,試由描出的點畫出該函數(shù)的圖象;
(4)結(jié)合函數(shù)y=的圖象,寫出這個函數(shù)的性質(zhì): .(只需寫一個)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某氣球內(nèi)充滿一定質(zhì)量的氣體,當(dāng)溫度不變時,氣球內(nèi)氣體的氣壓p(kPa)是氣體體積V(m3)的反比例函數(shù),其圖象如圖所示.
(1)寫出這一函數(shù)的表達(dá)式.
(2)當(dāng)氣體體積為1 m3時,氣壓是多少?
(3)當(dāng)氣球內(nèi)的氣壓大于140 kPa時,氣球?qū)⒈?/span>,為了安全考慮,氣體的體積應(yīng)不小于多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各組條件中,能夠判定△ABC≌△DEF 的是( )
A. ∠A=∠D,∠B=∠E,∠C=∠FB. AB=DE,BC=EF,∠A=∠D
C. ∠B=∠E=90°,BC=EF,AC=DFD. ∠A=∠D,AB=DF,∠B=∠E
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小新家、小華家和書店依次在東風(fēng)大街同一側(cè)(忽略三者與東風(fēng)大街的距離).小新小華兩人同時各自從家出發(fā)沿東風(fēng)大街勻速步行到書店買書,已知小新到達(dá)書店用了20分鐘,小華的步行速度是40米/分,設(shè)小新、小華離小華家的距離分別為y1(米)、y2(米),兩人離家后步行的時間為x(分),y1與x的函數(shù)圖象如圖所示,根據(jù)圖象解決下列問題:
(1)小新的速度為_____米/分,a=_____;并在圖中畫出y2與x的函數(shù)圖象
(2)求小新路過小華家后,y1與x之間的函數(shù)關(guān)系式.
(3)直接寫出兩人離小華家的距離相等時x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(已知:如圖,AB為⊙O的直徑,AC、BC為弦,點P為上一點,AB=10,AC:BC=3:4.
(1)當(dāng)點P與點C關(guān)于直線AB對稱時(如圖1),求PC的長;
(2)當(dāng)點P為的中點時(如圖2),求PC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,將∠ABC繞點A按逆時針方向旋轉(zhuǎn)一定角度后,BC的對應(yīng)邊B'C'交CD邊于點G.連接BB'、CC'.若AD=7,CG=4,AB'=B'G,則
=__(結(jié)果保留根號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com