【題目】如圖,在△ABC中,∠ACB=90°,以點B為圓心,BC長為半徑畫弧,交線段AB于點D;以點A為圓心,AD長為半徑畫弧,交線段AC于點E,連結(jié)CD.
(1)若∠A=28°,求∠ACD的度數(shù).
(2)設(shè)BC=a,AC=b.
①線段AD的長是方程x2+2ax﹣b2=0的一個根嗎?說明理由.
②若AD=EC,求的值.
【答案】(1)31°;(2)①是,理由見解析;②
【解析】
(1)根據(jù)三角形內(nèi)角和定理求出∠B,根據(jù)等腰三角形的性質(zhì)求出∠BCD,計算即可;
(2)①根據(jù)勾股定理求出AD,利用求根公式解方程,比較即可;
②根據(jù)勾股定理列出算式,計算即可.
解:(1)∵∠ACB=90°,∠A=28°,
∴∠B=62°,
∵BD=BC,
∴∠BCD=∠BDC=59°,
∴∠ACD=90°﹣∠BCD=31°;
(2)①由勾股定理得,AB==,
∴AD=﹣a,
解方程x2+2ax﹣b2=0得,x==﹣a,
∴線段AD的長是方程x2+2ax﹣b2=0的一個根;
②∵AD=AE,
∴AE=EC=,
由勾股定理得,a2+b2=(b+a)2,
整理得,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,點D是邊AB上的動點,過點D作DE∥BC交AC于E,過E作EF∥AB交BC于F,連結(jié)DF.
(1)若點D是AB的中點,證明:四邊形DFEA是平行四邊形;
(2)若AC=8,BC=6,直接寫出當(dāng)△DEF為直角三角形時AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題探究
(1)如圖①,已知正方形ABCD的邊長為4.點M和N分別是邊BC、CD上兩點,且BM=CN,連接AM和BN,交于點P.猜想AM與BN的位置關(guān)系,并證明你的結(jié)論.
(2)如圖②,已知正方形ABCD的邊長為4.點M和N分別從點B、C同時出發(fā),以相同的速度沿BC、CD方向向終點C和D運(yùn)動.連接AM和BN,交于點P,求△APB周長的最大值;
問題解決
(3)如圖③,AC為邊長為2的菱形ABCD的對角線,∠ABC=60°.點M和N分別從點B、C同時出發(fā),以相同的速度沿BC、CA向終點C和A運(yùn)動.連接AM和BN,交于點P.求△APB周長的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知菱形ABCD的對角線相交于點O,延長AB至點E,使BE=AB,連接CE.
(1)求證:BD=EC;
(2)若∠E=50°,求∠BAO的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小剛用如圖所示的兩個轉(zhuǎn)盤做配紫色游戲,游戲規(guī)則是:分別旋轉(zhuǎn)兩個轉(zhuǎn)盤,若其中一個轉(zhuǎn)盤轉(zhuǎn)出了紅色,另一個轉(zhuǎn)出了藍(lán)色則可以配成紫色.此時小剛得1分,否則小明得1分.這個游戲規(guī)則對雙方公平嗎?請說明理由.若你認(rèn)為不公平,如何修改規(guī)則才能使游戲?qū)﹄p方公平?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的是( )
A. 為檢測我市正在銷售的酸奶質(zhì)量,應(yīng)該采用普查的方式
B. 若兩名同學(xué)連續(xù)五次數(shù)學(xué)測試的平均分相同,則方差較大的同學(xué)數(shù)學(xué)成績更穩(wěn)定
C. 拋擲一個正方體骰子,朝上的面的點數(shù)為奇數(shù)的概率是
D. “打開電視,正在播放廣告”是必然事件
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級一班數(shù)學(xué)調(diào)研考試成績繪制成頻數(shù)分布直方圖,如圖(得分取整數(shù)).請根據(jù)所給信息解答下列問題:
(1)這個班有多少人參加了本次數(shù)學(xué)調(diào)研考試?
(2)60.5~70.5分?jǐn)?shù)段的頻數(shù)和頻率各是多少?
(3)請你根據(jù)統(tǒng)計圖,提出一個與(1),(2)不同的問題,并給出解答.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB=6,O是AB的中點,直線l經(jīng)過點O,∠1=120°,P是直線l上一點。當(dāng)△APB為直角三角形時,AP= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形紙片BDEF和直角三角板BCA,點A在EF上,AC=DE=,FE=3,∠C=90°,∠CBA=30°.
(1)寫出三種不同類型的結(jié)論.
(2)將直角三角板繞點B旋轉(zhuǎn),在旋轉(zhuǎn)過程中,
①求點A與點E的最短距離;
②若將直角三角板繞點B從①中位置開始順時針旋轉(zhuǎn)α度(0≤α≤360),使∠BAE=90°,求α的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com