【題目】如圖,Rt△ABC中,∠C=90°,AC=8,BC=6.

(1)尺規(guī)作圖:作BAC的角平分線AD(保留作圖痕跡,不寫作法);

(2)求AD的長.

【答案】1)如圖見解析;(2

【解析】

(1)利用尺規(guī)作出∠BAC的平分線;

(2)作DEABE,設(shè)DE=CD=x,在RtBDE中,根據(jù)勾股定理構(gòu)建方程求出x,再根據(jù)勾股定理即可解決問題;

(1)如圖線段AD即為∠BAC的平分線;

(2)作DEABE.

∵∠DEA=C=90°,DAE=DAC,AD=AD,

∴△ADE≌△ADC,

AE=AC=8,DE=DC,設(shè)DE=DC=x.

AB==10,

BE=2,

RtBDE中,∵DE2+BE2=BD2,

x2+22=(6﹣x)2,

x=.

RtACD中.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過點C(1,2)分別作x軸、y軸的平行線,交直線y=-x+6A、B兩點,若反比例函數(shù)x>0)的圖像與ABC有公共點,則k的取值范圍是(

A. 2≤k≤9 B. 2≤k≤8 C. 2≤k≤5 D. 5≤k≤8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點E、FAC上,AD=BC,AD//BC,則添加下列哪個條件后,仍無法判定△ADF≌△CBE的是

A. DF=BE B. ∠D=∠B C. AE=CF D. DF//BE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ABC中,AB=AC,G為三角形外一點,且△GBC為等邊三角形.

(1)求證:直線AG垂直平分BC;

(2)以AB為一邊作等邊△ABE(如圖2),連接EG、EC,試判斷△EGC是否構(gòu)成直角三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB,CD相交于點O,OEAB于O,若BOD=40°,則不正確的結(jié)論是( )

A.AOC=40° B.COE=130° C.EOD=40° D.BOE=90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,然后解答后面的問題.

我們知道方程2x+3y=12有無數(shù)組解,但在實際生活中我們往往只需要求出其正整數(shù)解.例:由2x+3y=12,得,(x、y為正整數(shù)) 則有0<x<6.又為正整數(shù),則 為正整數(shù).

23互質(zhì),可知:x3的倍數(shù),從而x=3,代入=2.

∴2x+3y=12的正整數(shù)解為

問題:

(1)請你寫出方程2x+y=5的一組正整數(shù)解:_____

(2)若 為自然數(shù),則滿足條件的整數(shù)x值有_____;

A、2 B、3 C、4 D、5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校百變魔方社團準備購買,兩種魔方.已知購買2個種魔方和6個種魔方共需130元,購買3個種魔方和4個種魔方所需款數(shù)相同.

(1)求這兩種魔方的單價;

(2)結(jié)合社員們的需求,社團決定購買兩種魔方共100個(其中種魔方不超過50個).某商店有兩種優(yōu)惠活動,如圖所示.

請根據(jù)以上信息,說明選擇哪種優(yōu)惠活動購買魔方更實惠.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=6,DAC中點,過點AAE∥BC,連結(jié)BE,∠EBD=∠CBD,BD=5,則BE的長為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某周日上午8:00小宇從家出發(fā),乘車1小時到達某活動中心參加實踐活動.11:00時他在活動中心接到爸爸的電話,因急事要求他在12:00前回到家,他即刻按照來活動中心時的路線,以5千米/小時的平均速度快步返回.同時,爸爸從家沿同一路線開車接他,在距家20千米處接上了小宇,立即保持原來的車速原路返回.設(shè)小宇離家x(小時)后,到達離家y(千米)的地方,圖中折線OABCD表示y與x之間的函數(shù)關(guān)系.

(1)活動中心與小宇家相距 千米,小宇在活動中心活動時間為 小時,他從活動中心返家時,步行用了 小時;

(2)求線段BC所表示的y(千米)與x(小時)之間的函數(shù)關(guān)系式(不必寫出x所表示的范圍);

(3)根據(jù)上述情況(不考慮其他因素),請判斷小宇是否能在12:00前回到家,并說明理由.

查看答案和解析>>

同步練習冊答案