【題目】如圖1,在平面直角坐標(biāo)系中,直線AB與x軸,y軸分別交于點A(2,0), B(0,4).
(1)求直線AB的解析式;
(2)若點M為直線y=mx在第一象限上一點,且△ABM是等腰直角三角形,求m的值.
(3)如圖3,過點A(2,0)的直線交y軸負半軸于點P,N點的橫坐標(biāo)為-1,過N點的直線交AP于點M.求的值.
【答案】(1)y=﹣2x+4;(2)m的值是或或1;(3)2.
【解析】
(1)設(shè)直線AB的解析式是y=kx+b,代入得到方程組,求出即可;
(2)當(dāng)BM⊥BA,且BM=BA時,過M作MN⊥y軸于N,證△BMN≌△ABO(AAS),求出M的坐標(biāo)即可;②當(dāng)AM⊥BA,且AM=BA時,過M作MN⊥x軸于N,同法求出M的坐標(biāo);③當(dāng)AM⊥BM,且AM=BM時,過M作MN⊥x軸于N,MH⊥y軸于H,證△BHM≌△AMN,求出M的坐標(biāo)即可.
(3)設(shè)NM與x軸的交點為H,分別過M、H作x軸的垂線垂足為G,HD交MP于D點,求出H、G的坐標(biāo),證△AMG≌△ADH,△AMG≌△ADH≌△DPC≌△NPC,推出PN=PD=AD=AM代入即可求出答案.
(1) ∵A(2,0),B(0,4),
設(shè)直線AB的解析式是y=kx+b,
代入得:,
解得:k=﹣2,b=4,
∴直線AB的解析式是y=﹣2x+4.
(2)如圖,分三種情況:
①如圖①,當(dāng)BM⊥BA,且BM=BA時,過M作MN⊥y軸于N,
∵BM⊥BA,MN⊥y軸,OB⊥OA,
∴∠MBA=∠MNB=∠BOA=90°,
∴∠NBM+∠NMB=90°,∠ABO+∠NBM=90°,
∴∠ABO=∠NMB,
在△BMN和△ABO中
,
∴△BMN≌△ABO(AAS),
MN=OB=4,BN=OA=2,
∴ON=2+4=6,
∴M的坐標(biāo)為(4,6 ),
代入y=mx得:m=,
②如圖②,當(dāng)AM⊥BA,且AM=BA時,過M作MN⊥x軸于N,
易知△BOA≌△ANM(AAS),
同理求出M的坐標(biāo)為(6,2),
代入y=mx得:m=,
③如圖③,
當(dāng)AM⊥BM,且AM=BM時,過M作MN⊥X軸于N,MH⊥Y軸于H,
∴四邊形ONMH為矩形,
易知△BHM≌△AMN,
∴MN=MH,
設(shè)M(x1,x1)代入y=mx得:x1=m x1,
∴
答:m的值是或或1.
(3)如圖3,設(shè)NM與x軸的交點為H,過M作MG⊥x軸于G,過H作HD⊥x軸,
HD交MP于D點,
即:∠MGA=∠DHA=900,連接ND,ND 交y軸于C點
由與x軸交于H點,∴H(1,0),
由與y=kx﹣2k交于M點,∴M(3,k),
而A(2,0),
∴A為HG的中點,AG=AH,∠MAG=∠DAH
∴△AMG≌△ADH(ASA),∴AM=AD
又因為N點的橫坐標(biāo)為﹣1,且在上,
∴N(-1,﹣k),同理D(1,﹣k)
∴N關(guān)于y軸對稱點為D
∴PC是ND的垂直平分線∴PN=PD, CD=NC=HA=1,∠DCP=∠DHA=900,ND平行于X軸
∴∠CDP=∠HAD
∴△ADH≌△DPC ∴AD= PD
∴PN=PD=AD=AM,
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:我們知道,4x+2x-x=(4+2-1)x=5x,類似地,我們把(a+b)看成一個整體,則4(a+b)+2(a+b)-(a+b)-(4+2-1)(a+b)=5(a+b).“整體思想”是中學(xué)教學(xué)解題中的一種重要的思想方法,它在多項式的化簡與求值中應(yīng)用極為廣泛.
嘗試應(yīng)用:
(1)把(a-b)看成一個整體,合并3(a-b)2-7(a-b)2+2(a-b)2的結(jié)果是____________.
(2)已知x2-2y=5,求21-x2+y的值;
(3)拓廣探索:已知a-2b=3,2b-c=-5,c-d=10,求2(a-c)+2(2b-d)-2(2b-c)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在熱氣球A上看到正前方橫跨河流兩岸的大橋BC,并測得B、C兩點的俯角分別為45°、35°.已知大橋BC與地面在同一水平面上,其長度為100m,請求出熱氣球離地面的高度.
(結(jié)果保留整數(shù),參考數(shù)據(jù):sin35°≈,cos35°≈,tan35°≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列三行數(shù):
0,3,8,15,24,…①
2,5,10,17,26,…②
0,6,16,30,48,…③
(1)第①行數(shù)按什么規(guī)律排的,請寫出來?
(2)第②、③行數(shù)與第①行數(shù)分別對比有什么關(guān)系?
(3)取每行的第個數(shù),求這三個數(shù)的和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人參加射箭比賽,兩人各射了5箭,他們的成績(單位:環(huán))統(tǒng)計如下表.
第1箭 | 第2箭 | 第3箭 | 第4箭 | 第5箭 | |
甲成績 | 9 | 4 | 7 | 4 | 6 |
乙成績 | 7 | 5 | 6 | 5 | 7 |
(1)分別計算甲、乙兩人射箭比賽的平均成績;
(2)你認為哪個人的射箭成績比較穩(wěn)定?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有個填寫運算符號的游戲:在“”中的每個□內(nèi),填入中的某一個(可重復(fù)使用),然后計算結(jié)果.
(1)計算:;
(2)若請推算□內(nèi)的符號;
(3)在“”的□內(nèi)填入符號后,使計算所得數(shù)最小,直接寫出這個最小數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是住宅區(qū)內(nèi)的兩幢樓,它們的高AB=CD=30m,兩樓間的距離AC=30m,現(xiàn)需了解甲樓對乙樓的采光的影響情況.
(1)當(dāng)太陽光與水平線的夾角為30°角時,求甲樓的影子在乙樓上有多高(精確到0.1m,=1.73);
(2)若要甲樓的影子剛好不落在乙樓的墻上,此時太陽與水平線的夾角為多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校計劃購買20套足球服和一批足球(足球不少于20個),已知A、B兩家超市相同型號的產(chǎn)品價格相同,足球服每套240元,足球每個80元。A超市的優(yōu)惠政策為:每買一套足球服贈送一個足球;B超市的優(yōu)惠政策為:所有商品一律八折。
(1)設(shè)學(xué)校計劃購買x(x>20)個足球,用含有x的代數(shù)式分別表示在A、B兩家超市購買所需費用。
(2)若=30,通過計算說明此時按哪種方案購買較為合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場設(shè)立了一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,并規(guī)定:顧客購物10元以上就能獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機會,當(dāng)轉(zhuǎn)盤停止時,指針落在哪一區(qū)域就可以獲得相應(yīng)的獎品。下表是活動進行中的一組統(tǒng)計數(shù)據(jù):
(1)計算并完成表格:
轉(zhuǎn)動轉(zhuǎn)盤的次數(shù)n | 100 | 150 | 200 | 500 | 800 | 1000 |
落在“鉛筆”的次數(shù)m | 68 | 111 | 136 | 345 | 564 | 701 |
落在“鉛筆”的頻率m/n | 0.68 | 0.74 | △ | 0.69 | 0.705 | △ |
(2)請估計,當(dāng)n很大時,頻率將會接近多少?
(3)假如你去轉(zhuǎn)動該轉(zhuǎn)盤一次,你獲得鉛筆的概率約是多少?
(4)在該轉(zhuǎn)盤中,表示“鉛筆”區(qū)域的扇形的圓心角約是多少?(精確到1°)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com