【題目】直線的解析式為,分別交軸、軸于點.
(1)寫出兩點的坐標(biāo),并畫出直線的圖象.(不需列表);
(2)將直線向左平移4個單位得到交軸于點.作出的圖象,的解析式是___________.
(3)過的頂點能否畫出直線把分成面積相等的兩部分?若能,可以畫出幾條?直接寫出滿足條件的直線解析式.(不必在圖中畫出直線)
【答案】(1)A(6,0),B(0,4);(2);(3),,
【解析】
(1)分別令中求出與之相對應(yīng)的的值,由此即可得出點B、A的坐標(biāo),再連接AB即可;
(2)根據(jù)平移的規(guī)律即可求得;
(3)可以畫三條:過頂點和對邊中點的直線可以把三角形面積分成相等的兩部分.求出對邊中點坐標(biāo),利用待定系數(shù)法即可求出函數(shù)解析式.
(1)令,
∴點B的坐標(biāo)為(0,4);
令0,解得:,
∴點A的坐標(biāo)為(6,0).
畫出直線如圖:
(2)將直線向左平移4個單位得到1,則1的解析式為:
,
畫出直線1如上圖,
直線1的解析式為:;
(3)能畫出三條,如圖所示.
∵A(6,0),B(0,4),O(0,0),
∴AB的中點D(3,2),OA的中點E(3,0),OB的中點F(0,2);
設(shè)OD解析式為,
將D(3,2)代入解析式得,,
函數(shù)解析式為;
設(shè)BE解析式為,將E(3,0)代入解析式得,0=3m+4,
解得,
函數(shù)解析式為;
設(shè)AF解析式為,
將A(6,0)代入解析式得,,
解得,
函數(shù)解析式為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,∠AOC的平分線交AB于點D,E為BC的中點,已知A(0,4)、C(5,0),二次函數(shù) 的圖象拋物線經(jīng)過A、C兩點.
(1)求該二次函數(shù)的表達(dá)式;
(2)F,G分別為x軸、y軸上的動點,首尾順次連接D、E、F、G構(gòu)成四邊形DEFG,求四邊形DEFG周長的最小值;
(3)拋物線上是否存在點P,使△ODP的面積為8?若存在,求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直線a 、b被直線c所截,現(xiàn)給出下列四種條件:
①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判斷是a∥b的條件的序號是( )
A. ①② B. ①③ C. ①④ D. ③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以O(shè)為原點的直角坐標(biāo)系中,A點的坐標(biāo)為(0,3),直線x=-3交x軸于點B,P為線段AB上一動點,作直線PC⊥PO,交于直線x=﹣3于點C。過P點作直線MN平行于x軸,交y軸于M,交直線x=﹣3于點N。
(1)當(dāng)點C在第二象限時,求證:△OPM≌△PCN;
(2)設(shè)AP長為m,以P、O、B、C為頂點的四邊形的面積為S,請求出S與M之間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(3)當(dāng)點P在線段AB上移動時,點C也隨之在直線x=-3上移動,△PBC是否可能成為等腰三角形?如果可能,求出所有能使△PBC成為等腰三角形的點P的坐標(biāo),如果不可能,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△OAB的頂點坐標(biāo)分別為O(0,0)、A(3,2)、B(2,0),將這三個頂點的坐標(biāo)同時擴(kuò)大到原來的2倍,得到對應(yīng)點D、E、F.
(1)在圖中畫出△DEF;
(2)點E是否在直線OA上?為什么?
(3)△OAB與△DEF______位似圖形(填“是”或“不是”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把平面內(nèi)一條數(shù)軸繞原點逆時針旋轉(zhuǎn)角得到另一條數(shù)軸軸和軸構(gòu)成一個平面斜坐標(biāo)系.過點作軸的平行線,交軸于點,過點作軸的平行線,交軸于點.若點在軸上對應(yīng)的實數(shù)為,點在軸上對應(yīng)的實數(shù)為,則成有序?qū)崝?shù)對為點的斜坐標(biāo).
(1)在某平面斜坐標(biāo)系中,已知,點的斜坐標(biāo)為,點與點關(guān)于軸對稱,求點的斜坐標(biāo).
(2)某平面斜坐標(biāo)系中,已知點,求出點關(guān)于軸、軸的對稱點點、點的斜坐標(biāo).(用含及的式子表示).
(3)直接寫出點關(guān)于原點對稱的點的斜坐標(biāo)是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】公元前5世紀(jì),畢達(dá)哥拉斯學(xué)派中的一名成員希伯索斯發(fā)現(xiàn)了無理數(shù),導(dǎo)致了第一次數(shù)學(xué)危機(jī).是無理數(shù)的證明如下:
假設(shè)是有理數(shù),那么它可以表示成(與是互質(zhì)的兩個正整數(shù)).于是,所以,.于是是偶數(shù),進(jìn)而是偶數(shù).從而可設(shè),所以,,于是可得也是偶數(shù).這與“與是互質(zhì)的兩個正整數(shù)”矛盾,從而可知“是有理數(shù)”的假設(shè)不成立,所以,是無理數(shù).這種證明“是無理數(shù)”的方法是( )
A.綜合法B.反證法C.舉反例法D.數(shù)學(xué)歸納法
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別與BC,AC交于點D,E,過點D作DF⊥AC于點F.
(1)判斷DF與是⊙O的位置關(guān)系,并證明你的結(jié)論。
(2)若⊙O的半徑為4,∠CDF=22.5°,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】天水某公交公司將淘汰某一條線路上“冒黑煙”較嚴(yán)重的公交車,計劃購買A型和B型兩行環(huán)保節(jié)能公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元,
(1)求購買A型和B型公交車每輛各需多少萬元?
(2)預(yù)計在該條線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用不超過1220萬元,且確保這10輛公交車在該線路的年均載客量總和不少于650萬人次,則該公司有哪幾種購車方案?哪種購車方案總費用最少?最少總費用是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com