年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
從邊長(zhǎng)相等的正三角形、正四邊形、正五邊形、正六邊形、正八邊形中任選兩種不同的 正多邊形,能夠進(jìn)行平面鑲嵌的概率是 ( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在平面直角坐標(biāo)系xoy中,拋物線與x軸,y軸的交點(diǎn)分別為點(diǎn)A,點(diǎn)B,過(guò)點(diǎn)B作x軸的平行線BC,交拋物線于點(diǎn)C,連結(jié)AC.現(xiàn)有兩動(dòng)點(diǎn)P,Q分別從O,C兩點(diǎn)同時(shí)出發(fā),點(diǎn)P以每秒4個(gè)單位的速度沿OA向終點(diǎn)A移動(dòng),點(diǎn)Q以每秒1個(gè)單位的速度沿CB向點(diǎn)B移動(dòng),點(diǎn)P停止運(yùn)動(dòng)時(shí),點(diǎn)Q也同時(shí)停止運(yùn)動(dòng),線段OC,PQ相交于點(diǎn)D,過(guò)點(diǎn)D作DE∥OA,交CA于點(diǎn)E,射線QE交x軸于點(diǎn)F.設(shè)動(dòng)點(diǎn)P,Q移動(dòng)的時(shí)間為t(單位:秒)
(1)求A,B,C三點(diǎn)的坐標(biāo)和拋物線的頂點(diǎn)的坐標(biāo);
(2)當(dāng)t為何值時(shí),四邊形PQCA為平行四邊形?請(qǐng)寫(xiě)出計(jì)算過(guò)程;
(3)當(dāng)0<t<時(shí),△PQF的面積是否總為定值?若是,求出此定值,若不是,請(qǐng)說(shuō)明理由;
(4)當(dāng)t為何值時(shí),△PQF為等腰三角形?請(qǐng)寫(xiě)出解答過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,拋物線經(jīng)過(guò)點(diǎn)A(1,0),B(5,0),C(0,)三點(diǎn),設(shè)點(diǎn)E(x,y)是拋物線上一動(dòng)點(diǎn),且在x軸下方,四邊形OEBF是以O(shè)B為對(duì)角線的平行四邊形.
(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)E(x,y)運(yùn)動(dòng)時(shí),試求平行四邊形OEBF的面積S與x之間的函數(shù)關(guān)系式,并求出面積S的最大值?
(3)是否存在這樣的點(diǎn)E,使平行四邊形OEBF為正方形?若存在,求E點(diǎn),F(xiàn)點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,B,C,D是半徑為6的⊙O上的三點(diǎn),已知的長(zhǎng)為2π,且OD∥BC,則BD的長(zhǎng)為( 。
| A. | 3 | B. | 6 | C. | 6 | D. | 12 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
若α,β是方程x2﹣2x﹣3=0的兩個(gè)實(shí)數(shù)根,則α2+β2的值為( 。
| A. | 10 | B. | 9 | C. | 7 | D. | 5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
關(guān)于x的函數(shù)y=(m2﹣1)x2﹣(2m+2)x+2的圖象與x軸只有一個(gè)公共點(diǎn),求m的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com