【題目】(2016湖南省岳陽市第24題)如圖①,直線y=x+4交于x軸于點A,交y軸于點C,過A、C兩點的拋物線F1交x軸于另一點B(1,0).
(1)求拋物線F1所表示的二次函數(shù)的表達式;
(2)若點M是拋物線F1位于第二象限圖象上的一點,設(shè)四邊形MAOC和△BOC的面積分別為S四邊形MAOC和S△BOC,記S=S四邊形MAOC﹣S△BOC,求S最大時點M的坐標(biāo)及S的最大值;
(3)如圖②,將拋物線F1沿y軸翻折并“復(fù)制”得到拋物線F2,點A、B與(2)中所求的點M的對應(yīng)點分別為A′、B′、M′,過點M′作M′E⊥x軸于點E,交直線A′C于點D,在x軸上是否存在點P,使得以A′、D、P為頂點的三角形與△AB′C相似?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.
【答案】(1)、y=﹣x2﹣x+4;(2)、最大值為;M(﹣,5);(3)、(2,0)或(﹣,0)
【解析】
試題分析:(1)、利用一次函數(shù)的解析式求出點A、C的坐標(biāo),然后再利用B點坐標(biāo)即可求出二次函數(shù)的解析式;(2)、由于M在拋物線F1上,所以可設(shè)M(a,﹣a2﹣a+4),然后分別計算S四邊形MAOC和S△BOC,過點M作MD⊥x軸于點D,則S四邊形MAOC的值等于△ADM的面積與梯形DOCM的面積之和;(3)、由于沒有說明點P的具體位置,所以需要將點P的位置進行分類討論,當(dāng)點P在A′的右邊時,此情況是不存在;當(dāng)點P在A′的左邊時,此時∠DA′P=∠CAB′,若以A′、D、P為頂點的三角形與△AB′C相似,則分為以下兩種情況進行討論:①=;②=.
試題解析:(1)、令y=0代入y=x+4, ∴x=﹣3, A(﹣3,0),
令x=0,代入y=x+4, ∴y=4, ∴C(0,4),
設(shè)拋物線F1的解析式為:y=a(x+3)(x﹣1),
把C(0,4)代入上式得,a=﹣, ∴y=﹣x2﹣x+4,
(2)、如圖①,設(shè)點M(a,﹣a2﹣a+4) 其中﹣3<a<0 ∵B(1,0),C(0,4), ∴OB=1,OC=4
∴S△BOC=OBOC=2, 過點M作MD⊥x軸于點D, ∴MD=﹣a2﹣a+4,AD=a+3,OD=﹣a,
∴S四邊形MAOC=ADMD+(MD+OC)OD=ADMD+ODMD+ODOC=+=+
=×3(﹣a2﹣a+4)+×4×(﹣a)=﹣2a2﹣6a+6
∴S=S四邊形MAOC﹣S△BOC=(﹣2a2﹣6a+6)﹣2=﹣2a2﹣6a+4=﹣2(a+)2+
∴當(dāng)a=﹣時, S有最大值,最大值為 此時,M(﹣,5);
(3)、如圖②,由題意知:M′(),B′(﹣1,0),A′(3,0) ∴AB′=2
設(shè)直線A′C的解析式為:y=kx+b, 把A′(3,0)和C(0,4)代入y=kx+b,得:,∴
∴y=﹣x+4, 令x=代入y=﹣x+4, ∴y=2 ∴
由勾股定理分別可求得:AC=5,DA′= 設(shè)P(m,0)
當(dāng)m<3時, 此時點P在A′的左邊, ∴∠DA′P=∠CAB′, 當(dāng)=時,△DA′P∽△CAB′,
此時, =(3﹣m), 解得:m=2, ∴P(2,0)
當(dāng)=時,△DA′P∽△B′AC, 此時, =(3﹣m) m=﹣, ∴P(﹣,0)
當(dāng)m>3時, 此時,點P在A′右邊, 由于∠CB′O≠∠DA′E, ∴∠AB′C≠∠DA′P
∴此情況,△DA′P與△B′AC不能相似,
綜上所述,當(dāng)以A′、D、P為頂點的三角形與△AB′C相似時,點P的坐標(biāo)為(2,0)或(﹣,0).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明有兩根3cm、7cm的木棒,他想以這兩根木棒為邊做一個三角形,下列不能選用的木棒長為( 。
A.7cm
B.8cm
C.9cm
D.10cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若二次函數(shù)y=ax2的圖象經(jīng)過點P(﹣2,4),則該圖象必經(jīng)過點( )
A.(4,﹣2)
B.(﹣4,2)
C.(﹣2,﹣4)
D.(2,4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一元二次方程x2﹣8x﹣1=0配方后可變形為( )
A.(x+4)2=17
B.(x﹣4)2=17
C.(x+4)2=15
D.(x﹣4)2=15
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列數(shù)據(jù)85,88,73,88,79,85的眾數(shù)是( 。
A.88
B.73
C. 88,85
D.85
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某市有一塊長為(3a+b) 米,寬為(2a+b)米的長方形地塊,規(guī)劃部門計劃將陰影部分進行綠化,中間將修建一座雕像.
(1)試用含a,b的代數(shù)式表示綠化的面積是多少平方米?
(2)若a=10,b=8,且每平方米造價為100元求出綠化需要多少費用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】動點A從原點出發(fā)向數(shù)軸負(fù)方向運動,同時,動點B也從原點出發(fā)向數(shù)軸正方向運動,3秒后,兩點相距15個單位長度.已知動點A、B的速度比是1:4.(速度單位:單位長度/秒)
(1)求出兩個動點運動的速度;
(2)若A、B兩點從(1)中的位置同時向數(shù)軸負(fù)方向運動,幾秒后原點恰好處在兩個動點正中間;
(3)在(2)中A、B兩點繼續(xù)同時向數(shù)軸負(fù)方向運動時,另一動點C同時從B點位置出發(fā)向A運動,當(dāng)遇到A后,立即返回向B點運動,遇到B點后立即返回向A點運動,如此往返,直到B追上A時,C立即停止運動.若點C一直以20單位長度/秒的速度勻速運動,那么點C從開始到停止運動,運動的路程是多少單位長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,AB=10cm,BC=6cm,若動點P從點C開始,按C→A→B→C
的路徑運動,且速度為每秒1cm,設(shè)出發(fā)的時間為t秒.
(1)出發(fā)2秒后,求△ABP的周長.
(2)當(dāng)t為幾秒時,BP平分∠ABC
(3)問t為何值時,△BCP為等腰三角形?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com