【題目】如圖,在中,的平分線相交于點,過點作交于點,交的延長線于點
(1)求證:
(2)當時,求的長.
【答案】(1)見解析;(2)3-
【解析】
(1)利用等角的余角相等,證得∠EAG=∠D,利用AAS即可證明結論;
(2)根據勾股定理求得BC的長,再利用(1)的結論即可求解.
(1)∵BE,AE分別平分∠ABC,∠BAC的角平分線,
∴∠ABE=∠DBE,∠BAE=∠EAG,
∵DE⊥AE,
∴∠AED=90°,
∴∠EAG+∠AGE=90°,
∵∠ACB=90°,
∴∠ACD=180°-∠ACB=90°,
∴∠CGD+∠D=90°,
∵∠EGA=∠CGD,
∴∠EAG=∠D,
∴∠BAE =∠D,
在△ABE和△DBE中,
,
∴△ABE≌△DBE(AAS);
(2)∵AB=3,AC=2,∠ACB=90°,
∴BC2+AC2=AB2,得:,
∵△ABE≌△DBE,
∴AB=BD=3,
∴CD=BD-BC=3-.
科目:初中數學 來源: 題型:
【題目】為了解某小區(qū)居民使用共享單車次數的情況,某研究小組隨機采訪該小區(qū)的10位居民,得到這10位居民一周內使用共享單車的次數統(tǒng)計如下:
使用次數 | 0 | 5 | 10 | 15 | 20 |
人數 | 1 | 1 | 4 | 3 | 1 |
(1)這10位居民一周內使用共享單車次數的中位數是 次,眾數是 次.
(2)若小明同學把數據“20”看成了“30”,那么中位數,眾數和平均數中不受影響的是 .(填“中位數”,“眾數”或“平均數”)
(3)若該小區(qū)有2000名居民,試估計該小區(qū)居民一周內使用共享單車的總次數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4).
(1) 請畫出△ABC向左平移5個單位長度后得到的△ABC;
(2) 請畫出△ABC關于原點對稱的△ABC;
(3) 在軸上求作一點P,使△PAB的周長最小,請畫出△PAB,并直接寫出P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,CD=3cm,BC=4cm,連接BD,并過點C作CN⊥BD,垂足為N,直線l垂直BC,分別交BD、BC于點P、Q.直線l從AB出發(fā),以每秒1cm的速度沿BC方向勻速運動到CD為止;點M沿線段DA以每秒1cm的速度由點D向點A勻速運動,到點A為止,直線1與點M同時出發(fā),設運動時間為t秒(t>0).
(1)線段CN= ;
(2)連接PM和QN,當四邊形MPQN為平行四邊形時,求t的值;
(3)在整個運動過程中,當t為何值時△PMN的面積取得最大值,最大值是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某工廠制作兩種手工藝品,每天每件獲利比多105元,獲利30元的與獲利240元的數量相等.
(1)制作一件和一件分別獲利多少元?
(2)工廠安排65人制作,兩種手工藝品,每人每天制作2件或1件.現在在不增加工人的情況下,增加制作.已知每人每天可制作1件(每人每天只能制作一種手工藝品),要求每天制作,兩種手工藝品的數量相等.設每天安排人制作,人制作,寫出與之間的函數關系式.
(3)在(1)(2)的條件下,每天制作不少于5件.當每天制作5件時,每件獲利不變.若每增加1件,則當天平均每件獲利減少2元.已知每件獲利30元,求每天制作三種手工藝品可獲得的總利潤(元)的最大值及相應的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,內接于分別是和所對弧的中點,弦分別交于點,連結
(1)求證:是等邊三角形.
(2)若
①如圖2,當為的直徑時,求的長.
②當將的面積分成了的兩部分時,求的長.
(3)連結交于點,若:則的值為_______. (請直接寫出答案)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,以點為旋轉中心,將線段按順時針方向旋轉得到線段,連結.
(1)比較與的大小,并說明理由.
(2)當時,若,請你編制一個計算題(不標注新的字母),并解答
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A在反比例函數y=(x>0)的圖像上,點B在反比例函數y=(x>0)的圖像上,AB∥x軸,BC⊥x軸,垂足為C,連接AC,若△ABC的面積是6,則k的值為( )
A. 10 B. 12 C. 14 D. 16
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】現有甲、乙、丙三人組成的籃球訓練小組,他們三人之間進行互相傳球練習,籃球從一個人手中隨機傳到另外一個人手中計作傳球一次,共連續(xù)傳球三次.
(1)若開始時籃球在甲手中,則經過第一次傳球后,籃球落在丙的手中的概率是 ;
(2)若開始時籃球在甲手中,求經過連續(xù)三次傳球后,籃球傳到乙的手中的概率.(請用畫樹狀圖或列表等方法求解)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com