【題目】如圖,直線AB與CD相交于O,OE是∠AOC的平分線,OF⊥CD,OG⊥OE,∠BOD=52°.
(1)求∠AOC,∠AOF的度數(shù);
(2)求∠EOF與∠BOG是否相等?請(qǐng)說(shuō)明理由.
【答案】(1)∠AOC=52°,∠AOF=38°;(2)相等,理由見(jiàn)解析.
【解析】
(1)直接利用垂直的定義結(jié)合對(duì)頂角的定義得出∠AOC,∠AOF的度數(shù);
(2)分別求出∠EOF與∠BOG的度數(shù)進(jìn)而得出答案.
(1)∵OF⊥CD,
∴∠COF=90°,
又∵∠AOC與∠BOD是對(duì)頂角,
∴∠AOC=∠BOD=52°,
∴∠AOF=∠COF-∠AOC=90°-52°=38°;
(2)相等,
理由:∵∠AOC與∠BOD是對(duì)頂角,
∴∠AOC=∠BOD=52°,
∵OE是∠AOC的平分線,
∴∠AOE=∠AOC=26°,
又∵OG⊥OE,
∴∠EOG=90°,
∴∠BOG=180°-∠AOE-∠EOG=64°,
∵∠EOF=∠AOF+∠AOE=38°+26°=64°,
∴∠EOF=∠BOG.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解九年級(jí)學(xué)生體育測(cè)試情況,以九年級(jí)(1)班學(xué)生的體育測(cè)試成績(jī)?yōu)闃颖,按A,B,C,D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制成如下的統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中所給信息解答下列問(wèn)題:
(說(shuō)明:A級(jí):90分~100分;B級(jí):75分~89分;C級(jí):60分~74分;D級(jí):60分以下)
(1)請(qǐng)把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)樣本中D級(jí)的學(xué)生人數(shù)占全班學(xué)生人數(shù)的百分比是;
(3)扇形統(tǒng)計(jì)圖中A級(jí)所在的扇形的圓心角度數(shù)是;
(4)若該校九年級(jí)有600名學(xué)生,請(qǐng)樣本估計(jì)體育測(cè)試中A級(jí)學(xué)生人數(shù)約為 人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】章太炎先生有一句話:“夫國(guó)學(xué)者,國(guó)家所以成立之源泉也.“為了激發(fā)學(xué)生學(xué)習(xí)國(guó)學(xué)經(jīng)典的熱情,弘揚(yáng)文明風(fēng)尚,武侯區(qū)某學(xué)校以“書(shū)香飄溢校園國(guó)學(xué)浸潤(rùn)心靈“為主題,開(kāi)展國(guó)學(xué)經(jīng)典系列比賽項(xiàng)目:A讀經(jīng)典,B寫經(jīng)典,C唱經(jīng)典,D演經(jīng)典,為了解學(xué)生對(duì)這四個(gè)項(xiàng)目的報(bào)名參賽情況(每名學(xué)生選報(bào)一個(gè)項(xiàng)目),學(xué)校隨機(jī)抽取了部分學(xué)生進(jìn)行“你選擇參加哪一項(xiàng)經(jīng)典比賽活動(dòng)”的調(diào)查,并將調(diào)查結(jié)果繪制成了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息解答下列問(wèn)題.
(1)填空:在條形統(tǒng)計(jì)圖中,m=______,n=______;
(2)求在扇形統(tǒng)計(jì)圖中,“C“項(xiàng)目所在扇形的圓心角的度數(shù);
(3)若該學(xué)校共有學(xué)生2400名,請(qǐng)根據(jù)抽樣調(diào)查的結(jié)果,估計(jì)學(xué)校將有多少人參加“D“項(xiàng)目比賽活動(dòng)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:在數(shù)軸上A點(diǎn)表示數(shù)a,B點(diǎn)示數(shù)b,C點(diǎn)表示數(shù)c,b是最小的正整數(shù),且a、c滿足|a+2|+(c-7)2=0.
(1)a=______,b=______,c=______;
(2)若將數(shù)軸折疊,使得A點(diǎn)與C點(diǎn)重合,則點(diǎn)B與數(shù)______表示的點(diǎn)重合;
(3)點(diǎn)A、B、C開(kāi)始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)A以每秒1個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)B和點(diǎn)C分別以每秒2個(gè)單位長(zhǎng)度和4個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),假設(shè)t秒鐘過(guò)后,若點(diǎn)A與點(diǎn)B之間的距離表示為AB,點(diǎn)A與點(diǎn)C之間的距離表示為AC,點(diǎn)B與點(diǎn)C之間的距離表示為BC.則AB=______,AC=______,BC=______.(用含t的代數(shù)式表示).
(4)直接寫出點(diǎn)B為AC中點(diǎn)時(shí)的t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E,點(diǎn)F在邊CD上,CF=AE,連接AF,BF.
(1)求證:四邊形BFDE是矩形;
(2)已知∠DAB=60°,AF是∠DAB的平分線,若AD=3,求DC的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC經(jīng)過(guò)平移后得到△DEF,點(diǎn)A與點(diǎn)D,點(diǎn)B與點(diǎn)E,點(diǎn)C與點(diǎn)F分別是對(duì)應(yīng)點(diǎn),已知點(diǎn)A(3,3)、D(-2,1),解答下列問(wèn)題:
(1)請(qǐng)?jiān)谧鴺?biāo)系中畫出平移后的△DEF;
(2)請(qǐng)直接寫出以下點(diǎn)的坐標(biāo):B(___,___)、C(___,___)、E(___,___)、F(___,___);
(3)若點(diǎn)P(x,y)通過(guò)上述的平移規(guī)律平移得到的對(duì)應(yīng)點(diǎn)為Q(3,5),則P點(diǎn)坐標(biāo)為(____,____).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知DE∥BC,BE平分∠ABC,∠C=65°,∠ABC=50°.
(1)求∠BED的度數(shù);
(2)判斷BE與AC的位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市文化宮學(xué)習(xí)十九大有關(guān)優(yōu)先發(fā)展教育的精神,舉辦了為某貧困山區(qū)小學(xué)捐贈(zèng)書(shū)包活動(dòng).首次用2000元在商店購(gòu)進(jìn)一批學(xué)生書(shū)包,活動(dòng)進(jìn)行后發(fā)現(xiàn)書(shū)包數(shù)量不夠,又購(gòu)進(jìn)第二批同樣的書(shū)包,所購(gòu)數(shù)量是第一批數(shù)量的3倍,但單價(jià)貴了4元,結(jié)果第二批用了6300元.
(1)求文化官第一批購(gòu)進(jìn)書(shū)包的單價(jià)是多少?
(2)商店兩批書(shū)包每個(gè)的進(jìn)價(jià)分別是68元和70元,這兩批書(shū)包全部售給文化宮后,商店共盈利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解答下列各題:
(1)解不等式﹣x+1<7x﹣3;
(2)解不等式;
(3)解不等式,并把它的解集表示在數(shù)軸上.
(4)已知關(guān)于x的不等式組,恰好有兩個(gè)整數(shù)解,試確定實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com