(1)如圖1,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的長(zhǎng).
(2)如圖2,已知∠ACB=∠DCE=90°,∠ABC=∠CED=∠CAE=30°,AC=3,AE=8,求AD的長(zhǎng).
解:(1)如圖1,連接BE,
∵∠ACB=∠DCE=90°,
∴∠ACB+∠ACE=∠DCE+∠ACE,即∠BCE=∠ACD,
又∵AC=BC,DC=EC,
在△ACD和△BCE中,
,
∴△ACD≌△BCE,
∴AD=BE,
∵AC﹣BC=6,
∴AB=6,
∵∠BAC=∠CAE=45°
∴∠BAE=90°,
在Rt△BAE中,AB=6,AE=3,
∴BE=9,
∴AD=9;
(2)如圖2,連接BE,
在Rt△ACB中,∠ABC=∠CED=30°,
tan30°==,
∵∠ACB=∠DCE=90°,
∴∠BCE=∠ACD,
∴△ACD∽△BCE,
∴==,
∵∠BAC=60°,∠CAE=30°,
∴∠BAE=90°,又AB=6,AE=8,
∴BE=10,
∴AD=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
直線a、b、c、d的位置如圖所示,如果∠1=58°,∠2=58°,∠3=70°,那么∠4等于( 。
| A. | 58° | B. | 70° | C. | 110° | D. | 116° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,已知△ABC為等邊三角形,AB=2,點(diǎn)D為邊AB上一點(diǎn),過(guò)點(diǎn)D作DE∥AC,交BC于E點(diǎn);過(guò)E點(diǎn)作EF⊥DE,交AB的延長(zhǎng)線于F點(diǎn).設(shè)AD=x,△DEF的面積為y,則能大致反映y與x函數(shù)關(guān)系的圖象是( 。
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖①,②,③,用一種大小相等的正多邊形密鋪成一個(gè)“環(huán)”,我們稱之為環(huán)形密鋪.但圖④,⑤不是我們所說(shuō)的環(huán)形密鋪.請(qǐng)你再寫(xiě)出一種可以進(jìn)行環(huán)形密鋪的正多邊形: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)(a,b是不同時(shí)為零的常數(shù)),其導(dǎo)函數(shù)為.
(1)當(dāng)時(shí),若不等式對(duì)任意恒成立,求b的取值范圍;
(2)若函數(shù)為奇函數(shù),且在處的切線垂直于直線,關(guān)于x的方程在上有且只有一個(gè)實(shí)數(shù)根,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com