【題目】如圖,點A、BC在數(shù)軸上分別表示的數(shù)為-10,28,點DBC中點,點EAD中點.

(1)求EB的長;

(2)若動點P從點A出發(fā),以1cm/s的速度向點C運動,達到點C停止運動,點Q從點C出發(fā),以2cm/s的速度向點A運動,到達點A停止運動,若運動時間為ts,當t為何值時,PQ=3cm?

(3)點A,BC開始在數(shù)軸上運動,若點A1cm/s的速度向左運動,同時,點B和點C分別以4cm/s9cm/s的速度向右運動,假設t秒鐘過后,若點B與點C之間的距離表示為BC,點A與點B之間的距離表示為AB,請問:AB-BC的值是否隨時間t的變化而變化?若變化,請說明理由;若不變,請求其常數(shù)值.

【答案】1

23;7

3AB-BC的值不隨t的變化而變化,其常數(shù)值為6

【解析】

1)根據(jù)點DBC中點,點EAD中點確定D、E表示的數(shù),即可求出EB.

2)已知PQ兩點的運動速度和運動軌跡,AC之間的總長度,若運動時間為tPQ=3cm,路程等于速度乘以時間,根據(jù)總路程是18,可列出關(guān)于t的方程,本題有兩種情況,第一種情況P、Q未相遇距離為3 cm,第二種情況P、Q相遇之后繼續(xù)前進之后相距為3 cm.

3)根據(jù)AB,C的運動情況即可確定AB,BC的變化情況,即可確定AB-BC的值.

1)∵點DBC中點,D表示的數(shù)為

又∵點EAD中點確定,E表示的數(shù)為

EB=5-=

故答案:

2)根據(jù)題意可得:AC=18

①P、Q未相遇距離為3 cm

t+3+2t=18

t=5

t=5時,PQ=3cm

②P、Q相遇之后繼續(xù)前進之后相距為3 cm

2t-3+t=18

t=7

答案:57

t秒鐘后,A點位置為:10t,B點的位置為:2+4t,C點的位置為:8+9t

BC=8+9t(2+4t)=6+5t

AB=5t+12

ABBC=5t+12(5t+6)=6
AB-BC的值不隨t的變化而變化,其常數(shù)值為6

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知四邊形ABCD的一組對邊AD、BC的延長線交于點E.

(1)如圖①,若∠ABC=∠ADC90°,求證:ED·EAEC·EB;

(2)如圖②,若∠ABC120°,cosADC,CD5,AB12,△CDE的面積為6,求四邊形ABCD的面積;

(3)如圖③,另一組對邊ABDC的延長線相交于點F.cosABCcosADC,CD5,CFEDn,直接寫出AD的長(用含n的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D,點P、Q分別從B、C兩點同時出發(fā),其中點P沿BC向終點C運動,速度為1cm/s;點Q沿CA、AB向終點B運動,速度為2cm/s,設它們運動的時間為x(s).

(1)求x為何值時,PQ⊥AC;

(2)設△PQD的面積為y(cm2),當0<x<2時,求y與x的函數(shù)關(guān)系式;

(3)當0<x<2時,求證:AD平分△PQD的面積;

(4)探索以PQ為直徑的圓與AC的位置關(guān)系,請寫出相應位置關(guān)系的x的取值范圍(不要求寫出過程).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的直徑,

(1)求證:的切線;

(2)若點的中點,連接于點,當,時,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點A,B,C的坐標分別為Aa,3),Bb6),Cm+6,1),且a,b滿足

1)請用含m的式子表示AB兩點的坐標;

2)如圖,點A在第二象限,點B在第一象限,連接A、B、C、O四點;

①若點By軸的距離不小于點Ay軸距離的2倍,試求m的取值范圍;

②若三角形AOC的面積等于三角形ABC面積的,求實數(shù)m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解決概率計算問題,可以直接利用模型,也可以轉(zhuǎn)化后再利用模型.

請解決以下問題:

(1)如圖,一個尋寶游戲,若寶物隨機藏在某一塊磚下(圖中每一塊磚形狀大小完全相同),則寶物藏在陰影磚下的概率是多少?

(2)1~9中隨機選取3個整數(shù),若以這3個整數(shù)為邊長構(gòu)成三角形的情況如下表:

請根據(jù)表中數(shù)據(jù),估計構(gòu)成鈍角三角形的概率是多少(精確到百分位)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線MN∥PQ,直線AB分別與MN,PQ相交于點A,B.小宇同學利用尺規(guī)按以下步驟作圖:以點A為圓心,以任意長為半徑作弧交AN于點C,交AB于點D;②分別以C,D為圓心,以大于CD長為半徑作弧,兩弧在∠NAB內(nèi)交于點E;③作射線AEPQ于點F.若AB=2,∠ABP=60°,則線段AF的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,,,將沿直線向右平移2個單位得到,連接,則下列結(jié)論:①;②;③四邊形的周長是16;④S四邊形ABEO=S四邊形CFDO其中結(jié)論正確的個數(shù)有(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=6,BC=4,過對角線BD中點O的直線分別交AB,CD邊于點E,F(xiàn).

(1)求證:四邊形BEDF是平行四邊形;

(2)當四邊形BEDF是菱形時,求EF的長.

查看答案和解析>>

同步練習冊答案