【題目】等邊三角形ABC的邊長為6,在AC,BC邊上各取一點(diǎn)E,F(xiàn),連接AF,BE相交于點(diǎn)P.
(1)若AE=CF; ①求證:AF=BE,并求∠APB的度數(shù);
②若AE=2,試求APAF的值;
(2)若AF=BE,當(dāng)點(diǎn)E從點(diǎn)A運(yùn)動到點(diǎn)C時,試求點(diǎn)P經(jīng)過的路徑長.

【答案】
(1)①證明:∵△ABC為等邊三角形,

∴AB=AC,∠C=∠CAB=60°,

又∵AE=CF,

在△ABE和△CAF中,

,

∴△ABE≌△CAF(SAS),

∴AF=BE,∠ABE=∠CAF.

又∵∠APE=∠BPF=∠ABP+∠BAP,

∴∠APE=∠BAP+∠CAF=60°.

∴∠APB=180°﹣∠APE=120°.

②∵∠C=∠APE=60°,∠PAE=∠CAF,∴△APE∽△ACF,

,即 ,所以APAF=1


(2)若AF=BE,有AE=BF或AE=CF兩種情況.

①當(dāng)AE=CF時,點(diǎn)P的路徑是一段弧,由題目不難看出當(dāng)E為AC的中點(diǎn)的時候,點(diǎn)P經(jīng)過弧AB的中點(diǎn),此時△ABP為等腰三角形,且∠ABP=∠BAP=30°,

∴∠AOB=120°,

又∵AB=6,

∴OA= ,

點(diǎn)P的路徑是

②當(dāng)AE=BF時,點(diǎn)P的路徑就是過點(diǎn)C向AB作的垂線段的長度;因?yàn)榈冗吶切蜛BC的邊長為6,所以點(diǎn)P的路徑為:

所以,點(diǎn)P經(jīng)過的路徑長為 或3


【解析】(1)①證明△ABE≌△CAF,借用外角即可以得到答案;②利用勾股定理求得AF的長度,再用平行線分線段成比例定理或者三角形相似定理求得 的比值,即可以得到答案.(2)當(dāng)點(diǎn)F靠近點(diǎn)C的時候點(diǎn)P的路徑是一段弧,由題目不難看出當(dāng)E為AC的中點(diǎn)的時候,點(diǎn)P經(jīng)過弧AB的中點(diǎn),此時△ABP為等腰三角形,繼而求得半徑和對應(yīng)的圓心角的度數(shù),求得答案.點(diǎn)F靠近點(diǎn)B時,點(diǎn)P的路徑就是過點(diǎn)B向AC做的垂線段的長度;
【考點(diǎn)精析】利用等邊三角形的性質(zhì)和相似三角形的判定與性質(zhì)對題目進(jìn)行判斷即可得到答案,需要熟知等邊三角形的三個角都相等并且每個角都是60°;相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑為1,A、P、B、C是⊙O上的四個點(diǎn),∠APC=∠CPB=60°.
(1)判斷△ABC的形狀:
(2)試探究線段PA、PB、PC之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠C=90°,AC=BC.作射線AP,過點(diǎn)BBDAP于點(diǎn)D,連接CD.

(1)當(dāng)射線AP位于圖1所示的位置時

①根據(jù)題意補(bǔ)全圖形;

②求證:AD+BD=CD.

(2)當(dāng)射線AP繞點(diǎn)A由圖1的位置順時針旋轉(zhuǎn)至∠BAC的內(nèi)部,如圖2,直接寫出此時AD,BD,CD三條線段之間的數(shù)量關(guān)系為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD是矩形,把矩形沿直線AC折疊,點(diǎn)B落在點(diǎn)E處,連接DE.若DE:AC=3:5,則 的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖△ABC中,∠A=96°,延長BCD,∠ABC∠ACD的平分線相交于點(diǎn)A1∠A1BC∠A1CD的平分線相交于點(diǎn)A2,依此類推,∠A4BC∠A4CD的平分線相交于點(diǎn)A5,∠A5的度數(shù)為(

A. 19.2° B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】
【合作學(xué)習(xí)】

如圖,矩形ABOD的兩邊OB,OD都在坐標(biāo)軸的正半軸上,OD=3,另兩邊與反比例函數(shù)y= (k≠0)的圖象分別相交于點(diǎn)E,F(xiàn),且DE=2.過點(diǎn)E作EH⊥x軸于點(diǎn)H,過點(diǎn)F作FG⊥EH于點(diǎn)G.回答下面的問題:
①該反比例函數(shù)的解析式是什么?
②當(dāng)四邊形AEGF為正方形時,點(diǎn)F的坐標(biāo)是多少?
(1)閱讀合作學(xué)習(xí)內(nèi)容,請解答其中的問題;
(2)小亮進(jìn)一步研究四邊形AEGF的特征后提出問題:“當(dāng)AE>EG時,矩形AEGF與矩形DOHE能否全等?能否相似?”
針對小亮提出的問題,請你判斷這兩個矩形能否全等?直接寫出結(jié)論即可;這兩個矩形能否相似?若能相似,求出相似比;若不能相似,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小蘇和小林在如圖所示的跑道上進(jìn)行4×50米折返跑.在整個過程中,跑步者距起跑線的距離y(單位:m)與跑步時間t(單位:s)的對應(yīng)關(guān)系如下圖所示.下列敘述正確的是(

A. 兩人從起跑線同時出發(fā),同時到達(dá)終點(diǎn)

B. 小蘇跑全程的平均速度大于小林跑全程的平均速度

C. 小蘇前15s跑過的路程大于小林前15s跑過的路程

D. 小林在跑最后100m的過程中,與小蘇相遇2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知ADBC,ABEF,CDEG,且點(diǎn)E在直線AD點(diǎn)F,H,G在直線BCEH平分FEG,∠A=∠D=110°,線段EH的長是不是兩條平行線AD,BC之間的距離?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°,AD是高,BE是中線,CF是角平分線,CFAD于點(diǎn)G,交BE于點(diǎn)H,下面說法中正確的序號是_____

①△ABE的面積等于△BCE的面積;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.

查看答案和解析>>

同步練習(xí)冊答案