【題目】如圖,若BD為等邊ABC的一條中線,延長BC至點(diǎn)E,使CECD1,連接DE,則DE的長為( 。

A.B.C.D.

【答案】B

【解析】

由等邊三角形的性質(zhì)及已知條件可證BDDE,可知BC長及BDAC,在RtBDC中,由勾股定理得BD長,易知DE長.

解:∵△ABC為等邊三角形,

∴∠ABC=∠ACB60°,ABBC

BD為中線,

∴∠DBCABC30°,

CDCE,

∴∠E=∠CDE,

∵∠E+CDE=∠ACB,

∴∠E30°=∠DBC,

BDDE

BDAC中線,CD1,

ADCD1,

∵△ABC是等邊三角形,

BCAC1+12,且BDAC,

RtBDC中,由勾股定理得:

DEBD

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長為1,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn)的三角形)ABC的頂點(diǎn)AC的坐標(biāo)分別為(﹣4,5),(﹣1,3).

1)在如圖所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系,標(biāo)注原點(diǎn)以及x軸、y軸;

2)作出△ABC關(guān)于y軸對(duì)稱的△ABC′,并寫出點(diǎn)B′的坐標(biāo);

3)點(diǎn)Px軸上的動(dòng)點(diǎn),在圖中找出使△ABP周長最小時(shí)的點(diǎn)P,直接寫出點(diǎn)P的坐標(biāo)是:   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰ABC中,AB=AC,∠BAC120°,ADBC于點(diǎn)D,點(diǎn)PBA延長線上一點(diǎn),點(diǎn)O是線段AD上一點(diǎn),OPOC,

(1)求∠APO+DCO的度數(shù);

(2)求證:點(diǎn)POC的垂直平分線上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)C在以AB為直徑的半圓上,AB8∠CBA30°,點(diǎn)D在線段AB上運(yùn)動(dòng),點(diǎn)E與點(diǎn)D關(guān)于AC對(duì)稱,DF⊥DE于點(diǎn)D,并交EC的延長線于點(diǎn)F.下列結(jié)論:①CECF;線段EF的最小值為;當(dāng)AD2時(shí),EF與半圓相切;若點(diǎn)F恰好落在BC上,則AD當(dāng)點(diǎn)D從點(diǎn)A運(yùn)動(dòng)到點(diǎn)B時(shí),線段EF掃過的面積是.其中正確結(jié)論的序號(hào)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,以線段為邊在第四象限內(nèi)作等邊三角形,點(diǎn)正半軸上一動(dòng)點(diǎn) 連接,以線段為邊在第四象限內(nèi)作等邊三角形,連接并延長,交軸于點(diǎn)

(1)求證

(2)在點(diǎn)的運(yùn)動(dòng)過程中,的度數(shù)是否會(huì)變化?如果不變,請(qǐng)求出的度數(shù);如果變化,請(qǐng)說明理由

(3)當(dāng)點(diǎn)運(yùn)動(dòng)到什么位置時(shí),以為頂點(diǎn)的三角形是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,點(diǎn)、是圓上的兩點(diǎn),且平分,過點(diǎn)延長線的垂線,垂足為.若的半徑為,則圖中陰影部分的面積是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,,,把一條長為2016個(gè)單位長度且沒有彈性的細(xì)線線的粗細(xì)忽略不計(jì)的一端固定在點(diǎn)A處,并按的規(guī)律繞在四邊形ABCD的邊上,則細(xì)線另一端所在位置的點(diǎn)的坐標(biāo)是  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RABC中,∠ACB90°,AC6,BC8,EAC上一點(diǎn),且AEAD平分∠BACBCD.若PAD上的動(dòng)點(diǎn),則PC+PE的最小值等于( 。

A.B.C.4D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的正半軸相交于A,B兩點(diǎn),與y軸相交于點(diǎn)C,對(duì)稱軸為直線x=2,且OA=OC.有下列結(jié)論:①abc<0;②3b+4c<0;③c>﹣1;④關(guān)于x的方程ax2+bx+c=0有一個(gè)根為﹣,其中正確的結(jié)論個(gè)數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊(cè)答案