【題目】如圖,若BD為等邊△ABC的一條中線,延長BC至點(diǎn)E,使CE=CD=1,連接DE,則DE的長為( 。
A.B.C.D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長為1,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn)的三角形)ABC的頂點(diǎn)A,C的坐標(biāo)分別為(﹣4,5),(﹣1,3).
(1)在如圖所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系,標(biāo)注原點(diǎn)以及x軸、y軸;
(2)作出△ABC關(guān)于y軸對(duì)稱的△A′B′C′,并寫出點(diǎn)B′的坐標(biāo);
(3)點(diǎn)P是x軸上的動(dòng)點(diǎn),在圖中找出使△A′BP周長最小時(shí)的點(diǎn)P,直接寫出點(diǎn)P的坐標(biāo)是: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于點(diǎn)D,點(diǎn)P是BA延長線上一點(diǎn),點(diǎn)O是線段AD上一點(diǎn),OP=OC,
(1)求∠APO+∠DCO的度數(shù);
(2)求證:點(diǎn)P在OC的垂直平分線上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C在以AB為直徑的半圓上,AB=8,∠CBA=30°,點(diǎn)D在線段AB上運(yùn)動(dòng),點(diǎn)E與點(diǎn)D關(guān)于AC對(duì)稱,DF⊥DE于點(diǎn)D,并交EC的延長線于點(diǎn)F.下列結(jié)論:①CE=CF;②線段EF的最小值為;③當(dāng)AD=2時(shí),EF與半圓相切;④若點(diǎn)F恰好落在BC上,則AD=;⑤當(dāng)點(diǎn)D從點(diǎn)A運(yùn)動(dòng)到點(diǎn)B時(shí),線段EF掃過的面積是.其中正確結(jié)論的序號(hào)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,以線段為邊在第四象限內(nèi)作等邊三角形,點(diǎn)為正半軸上一動(dòng)點(diǎn), 連接,以線段為邊在第四象限內(nèi)作等邊三角形,連接并延長,交軸于點(diǎn).
(1)求證:≌;
(2)在點(diǎn)的運(yùn)動(dòng)過程中,的度數(shù)是否會(huì)變化?如果不變,請(qǐng)求出的度數(shù);如果變化,請(qǐng)說明理由.
(3)當(dāng)點(diǎn)運(yùn)動(dòng)到什么位置時(shí),以為頂點(diǎn)的三角形是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的直徑,點(diǎn)、是圓上的兩點(diǎn),且平分,過點(diǎn)作延長線的垂線,垂足為.若的半徑為,,則圖中陰影部分的面積是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,,,,,把一條長為2016個(gè)單位長度且沒有彈性的細(xì)線線的粗細(xì)忽略不計(jì)的一端固定在點(diǎn)A處,并按的規(guī)律繞在四邊形ABCD的邊上,則細(xì)線另一端所在位置的點(diǎn)的坐標(biāo)是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在R△ABC中,∠ACB=90°,AC=6,BC=8,E為AC上一點(diǎn),且AE=,AD平分∠BAC交BC于D.若P是AD上的動(dòng)點(diǎn),則PC+PE的最小值等于( 。
A.B.C.4D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的正半軸相交于A,B兩點(diǎn),與y軸相交于點(diǎn)C,對(duì)稱軸為直線x=2,且OA=OC.有下列結(jié)論:①abc<0;②3b+4c<0;③c>﹣1;④關(guān)于x的方程ax2+bx+c=0有一個(gè)根為﹣,其中正確的結(jié)論個(gè)數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com