【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,以線段為邊在第四象限內(nèi)作等邊三角形,點(diǎn)正半軸上一動(dòng)點(diǎn), 連接以線段為邊在第四象限內(nèi)作等邊三角形,連接并延長(zhǎng),交軸于點(diǎn)

(1)求證;

(2)在點(diǎn)的運(yùn)動(dòng)過(guò)程中,的度數(shù)是否會(huì)變化?如果不變,請(qǐng)求出的度數(shù);如果變化,請(qǐng)說(shuō)明理由

(3)當(dāng)點(diǎn)運(yùn)動(dòng)到什么位置時(shí),以為頂點(diǎn)的三角形是等腰三角形?

【答案】詳見(jiàn)解析;的度數(shù)不會(huì)變化,;當(dāng)點(diǎn)運(yùn)動(dòng)到時(shí).

【解析】

1)根據(jù)等邊三角形的性質(zhì)可得BO=BA,BC=BD,∠OBA=CBD=60°,進(jìn)而可利用SAS證明

2)設(shè)BC、DE交于點(diǎn)F,如圖1,根據(jù)全等三角形的性質(zhì)可得∠1=2,根據(jù)三角形的內(nèi)角和定理可得∠CAD=CBD,進(jìn)而可得結(jié)論;

3)易求得∠EAC120°,∠OEA30°,即得以AE,C為頂點(diǎn)的三角形是等腰三角形時(shí),AEAC是腰,然后根據(jù)30°角的直角三角形的性質(zhì)可得AE的長(zhǎng),進(jìn)而可得AC、OC的長(zhǎng),即可得出點(diǎn)C的位置.

解:(1)證明:∵△AOB、△BCD是等邊三角形,

BO=BA,BC=BD,∠OBA=CBD=60°

∴∠OBC=ABD,

SAS);

2)設(shè)BC、DE交于點(diǎn)F,如圖1,

,∴∠1=2,

∵∠AFC=BFD,∴∠CAD=CBD=60°,

的度數(shù)不會(huì)變化,且

3)∵,∴∠EAC120°,∠OAE60°,∴∠OEA30°

∴以A,E,C為頂點(diǎn)的三角形是等腰三角形時(shí),AEAC是腰,

∵在RtAOE中,OA1,∠OEA30°,∴AE2,

ACAE2,∴OC1+23,

∴當(dāng)點(diǎn)C的坐標(biāo)為(30)時(shí),以AE,C為頂點(diǎn)的三角形是等腰三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,平分點(diǎn).

1)如圖①,若點(diǎn),,求的度數(shù);

2)如圖②,若點(diǎn),求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,AB=AC=10,BC=16,ADBC邊上的中線且AD=6AD上的動(dòng)點(diǎn),AC邊上的動(dòng)點(diǎn),則的最小值是( .

A.B.16C.6D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,A(21),B(3,4),C(1,3),過(guò)點(diǎn)(l0)x軸的垂線

(1)作出ABC關(guān)于直線的軸對(duì)稱圖形;

(2)直接寫(xiě)出A1(___,___),B1(___,___)C1(___,___);

(3)ABC內(nèi)有一點(diǎn)P(m,n),則點(diǎn)P關(guān)于直線的對(duì)稱點(diǎn)P1的坐標(biāo)為(___,___)(結(jié)果用含mn的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某書(shū)店老板去圖書(shū)批發(fā)市場(chǎng)購(gòu)買(mǎi)某種圖書(shū),第一次用元購(gòu)書(shū)若干本, 并按該書(shū)定價(jià)元出售,很快售完.由于該書(shū)暢銷(xiāo),第二次購(gòu)書(shū)時(shí),每本書(shū)的批發(fā)價(jià)已比第一次提高了,他用元所購(gòu)該書(shū)數(shù)量比第一次多.當(dāng)按定價(jià)元售出本時(shí),出現(xiàn)滯銷(xiāo),便以定價(jià)的折售完剩余的書(shū)

每本書(shū)第一次的批發(fā)價(jià)是多少錢(qián)?

試問(wèn)該老板這兩次售書(shū)總體上是賠錢(qián)了,還是賺錢(qián)了(不考慮其它因素)?若賠錢(qián),賠多少?若賺錢(qián),賺多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,若BD為等邊ABC的一條中線,延長(zhǎng)BC至點(diǎn)E,使CECD1,連接DE,則DE的長(zhǎng)為( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】材料:我們將能完全覆蓋三角形的最小圓稱為該三角形的最小覆蓋圓.若三角形為銳角三角形,則其最小覆蓋圓為其外接圓;若三角形為直角或鈍角三角形,則其最小覆蓋圓是以三角形最長(zhǎng)邊(直角或鈍角所對(duì)的邊)為直徑的圓.問(wèn)題:能覆蓋住邊長(zhǎng)為、的三角形的最小圓的直徑是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形ABCD中,點(diǎn)P在AD上,AB=,AP=1.將直角尺的頂點(diǎn)放在P處,直角尺的兩邊分別交AB、BC于點(diǎn)E、F,連接EF(如圖1).當(dāng)點(diǎn)E與點(diǎn)B重合時(shí),點(diǎn)F恰好與點(diǎn)C重合(如圖2).將直角尺從圖2中的位置開(kāi)始,繞點(diǎn)P順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E和點(diǎn)A重合時(shí)停止.在這個(gè)過(guò)程中,從開(kāi)始到停止,線段EF的中點(diǎn)所經(jīng)過(guò)的路徑長(zhǎng)為.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】寒假即將到來(lái),外出旅游的人數(shù)逐漸增多,對(duì)旅行包的需求也將增多,某店準(zhǔn)備到生產(chǎn)廠家購(gòu)買(mǎi)旅行包,該廠有甲、乙兩種新型旅行包.若購(gòu)進(jìn)10個(gè)甲種旅行包和20個(gè)乙種旅行包共需5600元,若購(gòu)進(jìn)20個(gè)甲種旅行包和10個(gè)乙種旅行包共需5200元.

1)甲、乙兩種旅行包的進(jìn)價(jià)分別是多少元?

2)若該店恰好用了7000元購(gòu)買(mǎi)旅行包;

①設(shè)該店購(gòu)買(mǎi)了m個(gè)甲種旅行包,求該店購(gòu)買(mǎi)乙種旅行包的個(gè)數(shù);

②若該店將甲種旅行包的售價(jià)定為298元,乙種旅行包的售價(jià)定為325元,則當(dāng)該店怎么樣進(jìn)貨,才能獲得最大利潤(rùn),并求出最大利潤(rùn).

查看答案和解析>>

同步練習(xí)冊(cè)答案