【題目】如圖,已知點(diǎn)A(2,0),以A為圓心作⊙A與y軸切于原點(diǎn),與x軸的另一個(gè)交點(diǎn)為B,過B作⊙A的切線l.
(1)以直線l為對(duì)稱軸的拋物線過點(diǎn)A,拋物線與x軸的另一個(gè)交點(diǎn)為點(diǎn)C,拋物線的頂點(diǎn)為點(diǎn)E,如果CO=2BE,求此拋物線的解析式;
(2)過點(diǎn)C作⊙A的切線CD,D為切點(diǎn),求此切線長(zhǎng);
(3)點(diǎn)F是切線CD上的一個(gè)動(dòng)點(diǎn),當(dāng)△BFC與△CAD相似時(shí),求出BF的長(zhǎng).
【答案】(1)y=(x-2)(x-6);(2)CD=2;(3)BF的長(zhǎng)為或.
【解析】
(1)由題意可知拋物線的對(duì)稱軸為x=4,然后設(shè)出拋物線的兩點(diǎn)式,然后將點(diǎn)E的坐標(biāo)代入求解即可;
(2)由于AD是⊙A的切線,連接AD,那么根據(jù)切線的性質(zhì)知AD⊥CD,在Rt△ACD中,可利用勾股定理求得切線CD的長(zhǎng)度;
(3)若△BFC與△CAD相似,則有兩種情況需要考慮:①△FBC∽△ADC,②△BFC∽△CAD,根據(jù)不同的相似三角形所得不同的比例線段即可求得CF的長(zhǎng).
(1)∵A(2,0),⊙A與y軸切于原點(diǎn),
∴⊙A的半徑為2.
∴點(diǎn)B的坐標(biāo)為為(4,0).
∵點(diǎn)A、C關(guān)于x=4對(duì)稱,
∴C(6,0).
又CO=2BE,
∴E(4,-3)
設(shè)拋物線的解析式為y=a(x-2)(x-6),(a≠0);
∵拋物線經(jīng)過點(diǎn)E(4,-3)
∴-3=a(4-2)(4-6),
解得:a=.
∴拋物線的解析式為y=(x-2)(x-6);
(2)如圖1所示:連接AD,
∵AD是⊙A的切線,
∴∠ADC=90°,AD=2,
由(1)知,C(6,0).
∵A(2,0),
∴AC=4,
在Rt△ACD中,CD2=AC2-AD2=42-22=12,
∴CD=2.
(3)如圖2所示:當(dāng)FB⊥AD時(shí),連結(jié)AD.
∵∠FBC=∠ADC=90°,∠FCB=∠ACD,
∴△FBC∽△ADC,
∴=,即=.
解得:CF=.
如圖3所示:當(dāng)BF⊥CD時(shí),連結(jié)AD、過點(diǎn)B作BF⊥CD,垂足為F.
∵AD⊥CD,
∴BF∥AD,
∴△BFC∽△ADC,
∴=,即=.
∴CF=.
綜上所述,BF的長(zhǎng)為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫成另一個(gè)式子的平方,如:3+2,善于思考的小明進(jìn)行了以下探索:
設(shè)a+b(其中a、b、m、n均為整數(shù)),
則有:a+b,∴a=m2+2n2,b=2mn,這樣小明就找到了一種把類似a+b的式子化為平方式的方法.
請(qǐng)你仿照小明的方法探索并解決下列問題:
(1)當(dāng)a、b、m、n均為正整數(shù)時(shí),若a+b,用含m、n的式子分別表示a、b得:a= ,b= ;
(2)利用所探索的結(jié)論,用完全平方式表示出:7+4= .
(3)請(qǐng)化簡(jiǎn):.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,G是CD的中點(diǎn),E是邊AD上的動(dòng)點(diǎn),EG的延長(zhǎng)線與BC的延長(zhǎng)線交于點(diǎn)F,連結(jié)CE,DF.
(1)求證:四邊形CEDF為平行四邊形;
(2)若AB=6cm,BC=10cm,∠B=60°,
①當(dāng)AE= cm時(shí),四邊形CEDF是矩形;
②當(dāng)AE= cm時(shí),四邊形CEDF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一不透明的布袋里,裝有紅、黃、藍(lán)三種顏色的小球(除顏色外其余都相同),其中有紅球2個(gè),藍(lán)球1個(gè),黃球若干個(gè),現(xiàn)從中任意摸出一個(gè)球是紅球的概率為.
(1)求口袋中黃球的個(gè)數(shù);
(2)甲同學(xué)先隨機(jī)摸出一個(gè)小球(不放回),再隨機(jī)摸出一個(gè)小球,請(qǐng)用“樹狀圖法”或“列表法”,
求兩次摸 出都是紅球的概率;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在等邊△ABC中,點(diǎn)D.E分別在邊BC,AB上,且BD=AE,AD與CE交于點(diǎn)F.
(1)求證:AD=CE
(2)求∠DFC的度數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為測(cè)量某建筑物AB的高度,在離該建筑物底部20m的點(diǎn)C處,目測(cè)建筑物頂端A處,視線與水平線夾角∠ADE為38.5°,目高CD為1.6m.求建筑物AB的高度.(結(jié)果精確到1m)(參考數(shù)據(jù):sin38.5°=0.623,cos38.5°=0.783,tan38.5°=0.795)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2-4x+c,函數(shù)值y與自變量x之間的部分對(duì)應(yīng)值如表:
x | … | -2 | -1 | 0 | 1 | 2 | … |
y | … | 15 | m | n | 0 | k | … |
(1)求這個(gè)二次函數(shù)的關(guān)系式.
(2)直接寫出m、n、k之間的大小關(guān)系.(用“>”連接)
(3)若點(diǎn)P在這個(gè)二次函數(shù)的圖象上,且點(diǎn)P到x軸的距離為1,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),四邊形ABCO是菱形,點(diǎn)A的坐標(biāo)為(﹣3,4),點(diǎn)C在x軸的正半軸上,直線AC交y軸于點(diǎn)M,AB邊交y軸于點(diǎn)H,連接BM.
(1)菱形ABCO的邊長(zhǎng)
(2)求直線AC的解析式;
(3)動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿折線ABC方向以2個(gè)單位/秒的速度向終點(diǎn)C勻速運(yùn)動(dòng),設(shè)△PMB的面積為S(S≠0),點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,
①當(dāng)0<t<時(shí),求S與t之間的函數(shù)關(guān)系式;
②在點(diǎn)P運(yùn)動(dòng)過程中,當(dāng)S=3,請(qǐng)直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店計(jì)劃購(gòu)進(jìn)甲、乙兩種商品,乙種商品的進(jìn)價(jià)是甲種商品進(jìn)價(jià)的九折,用3600元購(gòu)買乙種商品要比購(gòu)買甲種商品多買10件.
(1)求甲、乙兩種商品的進(jìn)價(jià)各是多少元?
(2)該商店計(jì)劃購(gòu)進(jìn)甲、乙兩種商品共80件,且乙種商品的數(shù)量不低于甲種商品數(shù)量的3倍.甲種商品的售價(jià)定為每件80元,乙種商品的售價(jià)定為每件70元,若甲、乙兩種商品都能賣完,求該商店能獲得的最大利潤(rùn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com