已知b>0時,二次函數(shù)的圖象如下列四個圖之一所示,根據(jù)圖象分析,a的值等于【  】

   A.-2        B.-1         C.1        D.2


A。

【考點(diǎn)】二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)的性質(zhì),曲線上點(diǎn)的坐標(biāo)與方程的關(guān)系,數(shù)形結(jié)合思想的應(yīng)用。


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


如圖,已知正方形ABCD,點(diǎn)E是邊AB的中點(diǎn),點(diǎn)O是線段AE上的一個動點(diǎn)(不與A、E重合),以O(shè)為圓心,OB為半徑的圓與邊AD相交于點(diǎn)M,過點(diǎn)M作⊙O的切線交DC于點(diǎn)N,連接OM、ON、BM、BN.記△MNO、△AOM、△DMN的面積分別為S1、S2、S3,則下列結(jié)論不一定成立的是(   )

A.S1>S2+S3      B.△AOM∽△DMN      C.∠MBN=45°      D.MN=AM+CN

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


定義:對于實(shí)數(shù)a,符號[a]表示不大于a的最大整數(shù).例如:[5.7]=5,[5]=5,[-π]=-4.

(1)如果[a]=-2,那么a的取值范圍是 ___________.

(2)如果 ,滿足條件的所有正整數(shù)x有____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,已知點(diǎn)A在反比例函數(shù)圖象上,點(diǎn)B在反比例函數(shù) (k≠0)的圖象上,CB∥x軸,BD∥AO,若CA=CB,則雙曲線的表達(dá)式為      

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


教室里的飲水機(jī)接通電源就進(jìn)入自動程序,開機(jī)加熱時每分鐘上升10℃,加熱到100℃,停止加熱,水溫開始下降,此時水溫(℃)與開機(jī)后用時(min)成反比例關(guān)系,直至水溫降至20℃,飲水機(jī)關(guān)機(jī)。飲水機(jī)關(guān)機(jī)后即刻自動開機(jī),重復(fù)上述自動程序。若在水溫為20℃時,接通電源后,水溫y(℃)和時間(min)的關(guān)系如圖,為了在下午第一節(jié)下課時(14:30)能喝到健康衛(wèi)生和水溫適中的水(水沸騰后水溫在20℃和50℃之間,含20℃和50℃),則接通電源的時間最晚是當(dāng)天下午的         之間。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


若拋物線y=ax2+bx+1與x軸只有一個交點(diǎn),且過點(diǎn)A(m,n),B(m+4,n),則n=

       (用含a的代數(shù)式表示);若a=1,則點(diǎn)A的坐標(biāo)為       。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,拋物線的頂點(diǎn)為D(﹣1,4),與軸交于點(diǎn)C(0,3),與軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè))。

(1)求拋物線的解析式;

(2)連接AC,CD,AD,試證明△ACD為直角三角形;

(3)若點(diǎn)E在拋物線上,EF⊥x軸于點(diǎn)F,以A、E、F為頂點(diǎn)的三角形與△ACD相似,試求出所有滿足條件的點(diǎn)E的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


 如圖表示一騎自行車者和一騎摩托車者沿相同路線由甲地到乙地行駛過程的函數(shù)圖象(分別為正比例函數(shù)和一次函數(shù)).兩地間的距離是80千米.請你根據(jù)圖象回答或解決下面的問題:

(1)誰出發(fā)的較早?早多長時間?誰到達(dá)乙地較早?早到多長時間?

(2)兩人在途中行駛的速度分別是多少?

(3)請你分別求出表示自行車和摩托車行駛過程的函數(shù)解析式(不要求寫出自變量的取值范圍);

(4)指出在什么時間段內(nèi)兩車均行駛在途中(不包括端點(diǎn));在這一時間段內(nèi),請你分別按下列條件列出關(guān)于時間x的方程或不等式(不要化簡,也不要求解):①自行車行駛在摩托車前面;②自行車與摩托車相遇;③自行車行駛在摩托車后面.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,A,P,B,C是⊙O上的四個點(diǎn),∠APC=∠BPC=60°,過點(diǎn)A作⊙O的切線交BP的延長線于點(diǎn)D.

(1)求證:△ADP∽△BDA;

(2)試探究線段PA,PB,PC之間的數(shù)量關(guān)系,并證明你的結(jié)論;

(3)若AD=2,PD=1,求線段BC的長.

查看答案和解析>>

同步練習(xí)冊答案