【題目】某文體商店計(jì)劃購(gòu)進(jìn)一批同種型號(hào)的籃球和同種型號(hào)的排球,每一個(gè)排球的進(jìn)價(jià)是每一個(gè)籃球的進(jìn)價(jià)的90%,用3600元購(gòu)買(mǎi)排球的個(gè)數(shù)要比用3600元購(gòu)買(mǎi)籃球的個(gè)數(shù)多10個(gè).
(1)問(wèn)每一個(gè)籃球、排球的進(jìn)價(jià)各是多少元?
(2)該文體商店計(jì)劃購(gòu)進(jìn)籃球和排球共100個(gè),且排球個(gè)數(shù)不低于籃球個(gè)數(shù)的3倍,籃球的售價(jià)定為每一個(gè)100元,排球的售價(jià)定為每一個(gè)90元.若該批籃球、排球都能賣(mài)完,問(wèn)該文體商店應(yīng)購(gòu)進(jìn)籃球、排球各多少個(gè)才能獲得最大利潤(rùn)?最大利潤(rùn)是多少?
【答案】(1)每一個(gè)籃球的進(jìn)價(jià)是40元,每一個(gè)排球的進(jìn)價(jià)是36元;(2)該文體商店應(yīng)購(gòu)進(jìn)籃球25個(gè)、排球75個(gè)才能獲得最大利潤(rùn),最大利潤(rùn)是5550元.
【解析】
(1)設(shè)每一個(gè)籃球的進(jìn)價(jià)是x元,則每一個(gè)排球的進(jìn)價(jià)是0.9x元,根據(jù)用3600元購(gòu)買(mǎi)排球的個(gè)數(shù)要比用3600元購(gòu)買(mǎi)籃球的個(gè)數(shù)多10個(gè)列出方程,解之即可得出結(jié)論;
(2)設(shè)文體商店計(jì)劃購(gòu)進(jìn)籃球m個(gè),總利潤(rùn)y元,根據(jù)題意用m表示y,結(jié)合m的取值范圍和m為整數(shù),即可得出獲得最大利潤(rùn)的方案.
解:(1)設(shè)每一個(gè)籃球的進(jìn)價(jià)是x元,則每一個(gè)排球的進(jìn)價(jià)是0.9x元,依題意有
,解得x=40,
經(jīng)檢驗(yàn),x=40是原方程的解,
0.9x=0.9×40=36.
故每一個(gè)籃球的進(jìn)價(jià)是40元,每一個(gè)排球的進(jìn)價(jià)是36元;
(2)設(shè)文體商店計(jì)劃購(gòu)進(jìn)籃球m個(gè),總利潤(rùn)y元,則
y=(100﹣40)m+(90﹣36)(100﹣m)=6m+5400,
依題意有,
解得0<m≤25且m為整數(shù),
∵m為整數(shù),
∴y隨m的增大而增大,
∴m=25時(shí),y最大,這時(shí)y=6×25+5400=5550,
100-25=75(個(gè)).
故該文體商店應(yīng)購(gòu)進(jìn)籃球25個(gè)、排球75個(gè)才能獲得最大利潤(rùn),最大利潤(rùn)是5550元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在足夠大的空地上有一段長(zhǎng)為的舊墻,某人利用舊墻和木欄圍成一個(gè)矩形菜園,其中,已知矩形菜園的一邊靠墻,另三邊一共用了的木欄.
(1)若,所圍成的矩形菜園的面積為,求所利用的舊墻的長(zhǎng);
(2)求矩形菜園面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,,點(diǎn)E為BC的中點(diǎn),以CD為直徑在正方形外部作半圓CFD,點(diǎn)F為半圓的中點(diǎn),連接,圖中陰影部分的面積是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在△ABC中,AC=BC=m,D是AB邊上的一點(diǎn),將∠B沿著過(guò)點(diǎn)D的直線折疊,使點(diǎn)B落在AC邊的點(diǎn)P處(不與點(diǎn)A,C重合),折痕交BC邊于點(diǎn)E.
(1)特例感知 如圖1,若∠C=60°,D是AB的中點(diǎn),求證:AP=AC;
(2)變式求異 如圖2,若∠C=90°,m=6,AD=7,過(guò)點(diǎn)D作DH⊥AC于點(diǎn)H,求DH和AP的長(zhǎng);
(3)化歸探究 如圖3,若m=10,AB=12,且當(dāng)AD=a時(shí),存在兩次不同的折疊,使點(diǎn)B落在AC邊上兩個(gè)不同的位置,請(qǐng)直接寫(xiě)出a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為4,點(diǎn)E在邊AB上,BE=1,∠DAM=45°,點(diǎn)F在射線AM上,且AF=,過(guò)點(diǎn)F作AD的平行線交BA的延長(zhǎng)線于點(diǎn)H,CF與AD相交于點(diǎn)G,連接EC、EG、EF.下列結(jié)論:①△ECF的面積為;②△AEG的周長(zhǎng)為8;③EG2=DG2+BE2;其中正確的是( 。
A.①②③B.①③C.①②D.②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解不等式組:請(qǐng)結(jié)合題意填空,完成本題的解答:
(1)解不等式①,得: ;
(2)解不等式②得: ;
(3)把不等式①和②的解集在數(shù)軸上表示出來(lái);
(4)原不等式組的解集為: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,點(diǎn)D是邊BC上一動(dòng)點(diǎn)(不與B、C重合),,DE交AC于點(diǎn)E,且.下列結(jié)論:①∽;②當(dāng)時(shí),與全等;③為直角三角形時(shí),BD等于8或.其中正確的有__________.(選填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店購(gòu)進(jìn)一批成本為每件40元的商品,經(jīng)調(diào)查發(fā)現(xiàn),該商品每天的銷(xiāo)售量(件與銷(xiāo)售單價(jià)(元之間滿(mǎn)足一次函數(shù)關(guān)系,其圖象如圖所示.
(1)求該商品每天的銷(xiāo)售量與銷(xiāo)售單價(jià)之間的函數(shù)關(guān)系式;
(2)若商店要使銷(xiāo)售該商品每天獲得的利潤(rùn)等于1000元,每天的銷(xiāo)售量應(yīng)為多少件?
(3)若商店按單價(jià)不低于成本價(jià),且不高于65元銷(xiāo)售,則銷(xiāo)售單價(jià)定為多少元時(shí),才能使銷(xiāo)售該商品每天獲得的利潤(rùn)最大?最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=x2+bx+c經(jīng)過(guò)A (0,3),B (4,3)兩點(diǎn),與x軸交于點(diǎn)E,F,以AB為邊作矩形ABCD,其中CD邊經(jīng)過(guò)拋物線的項(xiàng)點(diǎn)M,點(diǎn)P是拋物線上一動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)A,B重合),過(guò)點(diǎn)P作y軸的平行線1與直線AB交于點(diǎn)G,與直線BD交于點(diǎn)H,連接AF交直線BD于點(diǎn)N.
(1)求該拋物線的解析式以及頂點(diǎn)M的坐標(biāo);
(2)當(dāng)線段PH=2GH時(shí),求點(diǎn)P的坐標(biāo);
(3)在拋物線上是否存在點(diǎn)P,使得以點(diǎn)P,E,N,F為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com