【題目】如圖,四邊形ABCD中,AD∥BC,∠ADC=120°,P為直線CD上一動(dòng)點(diǎn),點(diǎn)M在線段BC上,連MP,設(shè)∠MPD=α.
(1)如圖1,若MP⊥CD,則∠BMP=___度;
(2)如圖2,當(dāng)P點(diǎn)在CD延長(zhǎng)線上時(shí),∠BMP=___(用α表示);
(3)如圖3,當(dāng)P點(diǎn)在DC延長(zhǎng)線上時(shí),(2)中結(jié)論是否仍成立?請(qǐng)畫(huà)出圖形并證明你的判斷.
【答案】(1)150;(2)60°+α;(3)不成立.理由見(jiàn)解析.
【解析】
(1)根據(jù)兩直線平行,同旁?xún)?nèi)角互補(bǔ)求出∠C,然后利用三角形的內(nèi)角和定理求出∠CMP,再根據(jù)平角的定義列式計(jì)算即可得解;
(2)根據(jù)兩直線平行,同旁?xún)?nèi)角互補(bǔ)求出∠C,然后利用三角形的內(nèi)角和定理求出∠CMP,再根據(jù)平角的定義列式計(jì)算即可得解;
(3)根據(jù)兩直線平行,同位角相等∠BCP,然后利用三角形的內(nèi)角和定理求出∠CMP,再根據(jù)平角的定義列式計(jì)算即可得解.
解:(1)∵AD∥BC,
∴∠C=180°-∠ADC=180°-120°=60°,
∵MP⊥CD,
∴∠CMP=90°-∠C=90°-60°=30°,
∴∠BMP=180°-∠CMP=180°-30°=150°;
(2)∵AD∥BC,
∴∠C=180°-∠ADC=180°-120°=60°,
在△CMP中,∠CMP=180°-∠C-∠MPD=180°-60°-α=120°-α,
∴∠BMP=180°-∠CMP=180°-(120°-α)=60°+α;
(3)不成立.
理由如下:∵AD∥BC,
∴∠BCP=∠ADC=120°,
在△CMP中,∠CMP=180°-∠BCP-∠MPD=180°-120°-α=60°-α,
∴∠BMP=180°-∠CMP=180°-(60°-α)=120°+α.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,△ABC與△DEC關(guān)于點(diǎn)C成中心對(duì)稱(chēng),連接AE、BD.
(1)線段AE、BD具有怎樣的位置關(guān)系和大小關(guān)系?說(shuō)明你的理由.
(2)如果△ABC的面積為5cm2 , 求四邊形ABDE的面積.
(3)當(dāng)∠ACB為多少度時(shí),四邊形ABDE為矩形?說(shuō)明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題:如圖(1),點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BE、EF、FD之間的數(shù)量關(guān)系.
【發(fā)現(xiàn)證明】小聰把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,從而發(fā)現(xiàn)EF=BE+FD,請(qǐng)你利用圖(1)證明上述結(jié)論.
【類(lèi)比引申】如圖(2),四邊形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,點(diǎn)E、F分別在邊BC、CD上,則當(dāng)∠EAF與∠BAD滿(mǎn)足 關(guān)系時(shí),仍有EF=BE+FD;請(qǐng)證明你的結(jié)論.
【探究應(yīng)用】如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分別有景點(diǎn)E、F,且AE⊥AD,DF=40(﹣1)米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長(zhǎng).(結(jié)果取整數(shù),參考數(shù)據(jù): =1.41, =1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,D是BC的中點(diǎn),AC的垂直平分線分別交AC,AD,AB于點(diǎn)E,O,F(xiàn),則圖中全等三角形的對(duì)數(shù)是( )
A.1對(duì)
B.2對(duì)
C.3對(duì)
D.4對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB,CD是⊙O的兩條互相垂直的直徑,點(diǎn)O1 , O2 , O3 , O4分別是OA、OB、OC、OD的中點(diǎn),若⊙O的半徑為2,則陰影部分的面積為( )
A.8
B.4
C.4π+4
D.4π﹣4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某中學(xué)為了了解孩子們對(duì)《中國(guó)詩(shī)詞大會(huì)》、《挑戰(zhàn)不可能》、《最強(qiáng)大腦》、《超級(jí)演說(shuō)家》、《地理中國(guó)》五種電視節(jié)目的喜愛(ài)程度,隨機(jī)在七、八、九年級(jí)抽取了部分學(xué)生進(jìn)行調(diào)查(每人只能選擇一種喜愛(ài)的電視節(jié)目),并將獲得的數(shù)據(jù)進(jìn)行整理,繪制出以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)兩幅統(tǒng)計(jì)圖中的信息回答下列問(wèn)題:
(1)本次調(diào)查中共抽取了 名學(xué)生.
(2)補(bǔ)全條形統(tǒng)計(jì)圖.
(3)在扇形統(tǒng)計(jì)圖中,喜愛(ài)《地理中國(guó)》節(jié)目的人數(shù)所在的扇形的圓心角是 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,若把邊長(zhǎng)為1的正方形ABCD的四個(gè)角(陰影部分)剪掉,得一四邊形A1B1C1D1 . 試問(wèn)怎樣剪,才能使剩下的圖形仍為正方形,且剩下圖形的面積為原來(lái)正方形面積的 ,請(qǐng)說(shuō)明理由.(寫(xiě)出證明及計(jì)算過(guò)程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A的坐標(biāo)是(﹣1,0),點(diǎn)B的坐標(biāo)是(9,0),以AB為直徑作⊙O′,交y軸的負(fù)半軸于點(diǎn)C,連接AC、BC,過(guò)A、B、C三點(diǎn)作拋物線.
(1)求點(diǎn)C的坐標(biāo)及拋物線的解析式;
(2)點(diǎn)E是AC延長(zhǎng)線上一點(diǎn),∠BCE的平分線CD交⊙O′于點(diǎn)D,求點(diǎn)D的坐標(biāo);并直接寫(xiě)出直線BC、直線BD的解析式;
(3)在(2)的條件下,拋物線上是否存在點(diǎn)P,使得∠PDB=∠CBD,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班在一次班會(huì)課上,就“遇見(jiàn)路人摔倒后如何處理”的主題進(jìn)行討論,并對(duì)全班 50 名學(xué)生的處理方式進(jìn)行統(tǒng)計(jì),得出相關(guān)統(tǒng)計(jì)表和統(tǒng)計(jì)圖.
組別 | A | B | C | D |
處理方式 | 迅速離開(kāi) | 馬上救助 | 視情況而定 | 只看熱鬧 |
人數(shù) | m | 30 | n | 5 |
請(qǐng)根據(jù)表圖所提供的信息回答下列問(wèn)題:
(1)統(tǒng)計(jì)表中的 m= ,n= ;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)若該校有 2000 名學(xué)生,請(qǐng)據(jù)此估計(jì)該校學(xué)生采取“馬上救助”方式的學(xué)生有多少人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com