【題目】如圖,李強(qiáng)在教學(xué)樓的點(diǎn)P處觀察對(duì)面的辦公大樓,為了求得對(duì)面辦公大樓的高度,李強(qiáng)測(cè)得辦公大樓頂部點(diǎn)A的仰角為30°,測(cè)得辦公大樓底部點(diǎn)B的俯角為37°,已知測(cè)量點(diǎn)P到對(duì)面辦公大樓上部AD的距離PM30m,辦公大樓平臺(tái)CD=10m.求辦公大樓的高度(結(jié)果保留整數(shù)).(參考數(shù)據(jù):sin37°≈,tan37°≈,≈1.73)

【答案】32米

【解析】

CPM作垂線CN垂足為N.在△PMA,可求AM,PN.在△PBN利用正切可求BN,利用總高度h=AM+BN即可得到結(jié)論

CPM作垂線CN垂足為NPMA中,∵APM=30°,∴PM=AM=30,解得AM==17.3,PN=PMNM=PMCD=3010=20PBN中,∵tan37°=,∴BM==15,所以總高度h=AM+BN=32.332

辦公大樓的高度約為32

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知:點(diǎn)A(0,0),B(,0),C(0,1)△ABC內(nèi)依次作等邊三角形,使一邊在x軸上,另一個(gè)頂點(diǎn)在BC邊上,作出的等邊三角形分別是第1個(gè)△AA1B1,第2個(gè)△B1A2B2,第3個(gè)△B2A3B3,…,則第個(gè)等邊三角形的邊長(zhǎng)等于__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC是邊長(zhǎng)為2的等邊三角形,點(diǎn)P為直線BC上的動(dòng)點(diǎn),把線段APA點(diǎn)逆時(shí)針旋轉(zhuǎn)60°至AE,OAB邊上一動(dòng)點(diǎn),則OE的最小值為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,點(diǎn)O是邊AC上一個(gè)動(dòng)點(diǎn),過O作直線MNBC.設(shè)MN交ACB的平分線于點(diǎn)E,交ACB的外角平分線于點(diǎn)F.

(1)求證:OE=OF;

(2)若CE=12,CF=5,求OC的長(zhǎng);

(3)當(dāng)點(diǎn)O在邊AC上運(yùn)動(dòng)到什么位置時(shí),四邊形AECF是矩形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三角形紙片中,,.將該紙片沿過點(diǎn)的直線折疊,使點(diǎn)落在斜邊上的一點(diǎn)處,折痕記為(如圖1),剪去后得到雙層(如圖2),再沿著邊某頂點(diǎn)的直線將雙層三角形剪開,使得展開后的平面圖形中有一個(gè)是平行四邊形.則所得平行四邊形的周長(zhǎng)為__________cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,3),點(diǎn)B和點(diǎn)D的坐標(biāo)分別為(m,0),(n,4),且m0,四邊形ABCD是矩形.

(1)如圖1,當(dāng)四邊形ABCD為正方形時(shí),求m,n的值;

(2)在圖2中,畫出矩形ABCD,簡(jiǎn)要說明點(diǎn)C,D的位置是如何確定的,并直接用含m的代數(shù)式表示點(diǎn)C的坐標(biāo);

(3)探究:當(dāng)m為何值時(shí),矩形ABCD的對(duì)角線AC的長(zhǎng)度最短.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2+bx+cAB,C三點(diǎn),點(diǎn)A的坐標(biāo)是3,0,點(diǎn)C的坐標(biāo)是0,-3,動(dòng)點(diǎn)P在拋物線上.

1b =_________,c =_________,點(diǎn)B的坐標(biāo)為_____________;(直接填寫結(jié)果)

(2)是否存在點(diǎn)P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說明理由;

(3)過動(dòng)點(diǎn)PPE垂直y軸于點(diǎn)E,交直線AC于點(diǎn)D,過點(diǎn)Dx軸的垂線.垂足為F,連接EF,當(dāng)線段EF的長(zhǎng)度最短時(shí),求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知在△ABC中,AB=AC,BD和CE分別是∠ABC和∠ACB的角平分線,且BD和CE相交于O點(diǎn).

(1)試說明△OBC是等腰三角形;

(2)連接OA,試判斷直線OA與線段BC的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把長(zhǎng)方形紙片紙沿對(duì)角線折疊,設(shè)重疊部分為,那么,下列說法錯(cuò)誤的是(

A.是等腰三角形,

B.折疊后ABECBD一定相等

C.折疊后得到的圖形是軸對(duì)稱圖形

D.EBAEDC一定是全等三角形

查看答案和解析>>

同步練習(xí)冊(cè)答案