【題目】點(diǎn)D,E分別是△ABC的邊AB,AC的中點(diǎn).
(1)如圖1,點(diǎn)O是△ABC內(nèi)的動(dòng)點(diǎn),點(diǎn)O,F分別是OB,OC的中點(diǎn),求證:DEFG是平行四邊形;
(2)如圖2,若BE交DC于點(diǎn)O,請問AO的延長線經(jīng)過BC的中點(diǎn)嗎?為什么?
【答案】(1)見解析;(2)見解析.
【解析】
(1)由三角形中位線定理得出DE∥GF,DE=GF,即可得出結(jié)論;
(2)由三角形的重心定理即可得出結(jié)論.
(1)∵D、E分別是△ABC的邊AB、AC的中點(diǎn),
∴DE是△ABC的中位線,
∴DE∥BC,BC=2DE,
同理:GF∥BC,BC=2GF,
∴DE∥GF,DE=GF,
∴四邊形DEFG是平行四邊形;
(2) AO的延長線經(jīng)過BC的中點(diǎn);理由如下:
∵BE、CD是△ABC的中線,BE交DC于點(diǎn)O,三角形的三條中線相交于一點(diǎn),
∴AO的延長線經(jīng)過BC的中點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,一次函數(shù)y=﹣x+b與反比例函數(shù)y= (k≠0)的圖象交于點(diǎn)A(1,3),B(m,1),與x軸交于點(diǎn)D,直線OA與反比例函數(shù)y= (k≠0)的圖象的另一支交于點(diǎn)C,過點(diǎn)B作直線l垂直于x軸,點(diǎn)E是點(diǎn)D關(guān)于直線l的對稱點(diǎn).
(1)k=;
(2)判斷點(diǎn)B,E,C是否在同一條直線上,并說明理由;
(3)如圖2,已知點(diǎn)F在x軸正半軸上,OF= ,點(diǎn)P是反比例函數(shù)y= (k≠0)的圖象位于第一象限部分上的點(diǎn)(點(diǎn)P在點(diǎn)A的上方),∠ABP=∠EBF,則點(diǎn)P的坐標(biāo)為( , ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果兩個(gè)角的差的絕對值等于,就稱這兩個(gè)角互為反余角,其中一個(gè)角叫做另一個(gè)角的反余角,例如,,,,則和互為反余角,其中是的反余角,也是的反余角.
如圖為直線AB上一點(diǎn),于點(diǎn)O,于點(diǎn)O,則的反余角是______,的反余角是______;
若一個(gè)角的反余角等于它的補(bǔ)角的,求這個(gè)角.
如圖2,O為直線AB上一點(diǎn),,將繞著點(diǎn)O以每秒角的速度逆時(shí)針旋轉(zhuǎn)得,同時(shí)射線OP從射線OA的位置出發(fā)繞點(diǎn)O以每秒角的速度逆時(shí)針旋轉(zhuǎn),當(dāng)射線OP與射線OB重合時(shí)旋轉(zhuǎn)同時(shí)停止,若設(shè)旋轉(zhuǎn)時(shí)間為t秒,求當(dāng)t為何值時(shí),與互為反余角圖中所指的角均為小于平角的角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角板如圖1擺放在直線MN上,在三角板OAB和三角板OCD中,,,.
保持三角板OCD不動(dòng),將三角板OAB繞點(diǎn)O以每秒的速度逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)時(shí)間為t秒.
當(dāng)______秒時(shí),OB平分此時(shí)______;
當(dāng)三角板OAB旋轉(zhuǎn)至圖2的位置,此時(shí)與有怎樣的數(shù)量關(guān)系?請說明理由;
如圖3,若在三角板OAB開始旋轉(zhuǎn)的同時(shí),另一個(gè)三角板OCD也繞點(diǎn)O以每秒的速度逆時(shí)針旋轉(zhuǎn),當(dāng)OB旋轉(zhuǎn)至射線OM上時(shí)同時(shí)停止.
當(dāng)t為何值時(shí),OB平分?
直接寫出在旋轉(zhuǎn)過程中,與之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,對角線AC,BD交于點(diǎn)O,E為AB中點(diǎn),點(diǎn)F在CB的延長線上,且EF∥BD.
(1)求證:四邊形OBFE是平行四邊形;
(2)當(dāng)線段AD和BD之間滿足什么條件時(shí),四邊形OBFE是矩形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場對某種商品進(jìn)行銷售,第x天的銷售單價(jià)為m元/件,日銷售量為n件,其中m,n分別是x(1≤x≤30,且x為整數(shù))的一次函數(shù),銷售情況如表:
銷售第x天 | 第1天 | 第2天 | 第3天 | 第4天 | … | 第30天 |
銷售單價(jià)m(元/件) | 49 | 48 | 47 | 46 | … | 20 |
日銷售量n(件) | 45 | 50 | 55 | 60 | … | 190 |
(1)觀察表中數(shù)據(jù),分別直接寫出m與x,n與x的函數(shù)關(guān)系式: , ;
(2)求商場銷售該商品第幾天時(shí)該商品的日銷售額恰好為3600元?
(3)銷售商品的第15天為兒童節(jié),請問:在兒童節(jié)前(不包括兒童節(jié)當(dāng)天)銷售該商品第幾天時(shí)該商品的日銷售額最多?商場決定將這天該商品的日銷售額捐獻(xiàn)給兒童福利院,試求出商場可捐款多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個(gè)大小不同的等腰直角三角形三角板如圖所示放置,圖是由它抽象出的幾何圖形,B,C,E在同一條直線上,聯(lián)結(jié)DC,
請找出圖中的全等三角形,并給予說明說明:結(jié)論中不得含有未標(biāo)識的字母;
試說明:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)為A(﹣3,4),B(﹣4,2),C(﹣2,1),△ABC繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°,得到△A1B1C1,將△A1B1C1向右平移6個(gè)單位,再向上平移2個(gè)單位得到△A2B2C2.
(1)畫出△A1B1C1和△A2B2C2;
(2)△ABC經(jīng)旋轉(zhuǎn)、平移后點(diǎn)A的對應(yīng)點(diǎn)分別為A1、A2,請寫出點(diǎn)A1、A2的坐標(biāo);
(3)P(a,b)是△ABC的邊AC上一點(diǎn),△ABC經(jīng)旋轉(zhuǎn)、平移后點(diǎn)P的對應(yīng)點(diǎn)分別為P1,P2,請寫出點(diǎn)P1、P2的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com