【題目】為保護和改善環(huán)境,發(fā)展新經(jīng)濟,國家出臺了不限行、不限購等諸多新能源汽車優(yōu)惠政策鼓勵新能源汽車的發(fā)展,為響應(yīng)號召,某市某汽車專賣店銷售A,B兩種型號的新能源汽車共25輛,這兩種型號的新能源汽車的進(jìn)價、售價如下表:
進(jìn)價萬元輛 | 售價萬元輛 | |
A型 | 10 | |
B型 | 15 |
如何進(jìn)貨,進(jìn)貨款恰好為325萬元?
如何進(jìn)貨,該專賣店售完A,B兩種型號的新能源汽車后獲利最多且不超過進(jìn)貨價的,此時利潤為多少元?
【答案】(1) 當(dāng)該專賣店購進(jìn)A型車10輛,購進(jìn)B型車15輛時,進(jìn)貨款恰好為325萬元;(2) 當(dāng)購進(jìn)A型新能源汽車19輛,B型新能源汽車6輛時獲利最多,此時利潤為萬元.
【解析】
(1)根據(jù)題意可以列出相應(yīng)的方程,從而可以解答本題;
(2)根據(jù)題意可以得到利潤和A型號汽車數(shù)量的關(guān)系,再根據(jù)該專賣店售完A,B兩種型號的新能源汽車后獲利最多且不超過進(jìn)貨價的10%,可以得到相應(yīng)的不等式,從而可以解答本題.
設(shè)該專賣店購進(jìn)A型車x輛,則購進(jìn)B型車輛,
,
解得,.
購進(jìn)B型車輛,
答:當(dāng)該專賣店購進(jìn)A型車10輛,購進(jìn)B型車15輛時,進(jìn)貨款恰好為325萬元;
設(shè)該專賣店購進(jìn)A型新能源汽車a輛,則購進(jìn)B型新能源汽車輛,專賣店的獲利為y元,
,
該專賣店售完A,B兩種型號的新能源汽車后獲利最多且不超過進(jìn)貨價的,
,
.
,
,
隨a的增大而減小,
當(dāng)時,y最大,最大值為:萬元,
購進(jìn)B型新能源汽車輛,
答:當(dāng)購進(jìn)A型新能源汽車19輛,B型新能源汽車6輛時獲利最多,此時利潤為萬元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD⊥AB于點D,點E在CD上,下列四個條件:①AD=ED;②∠A=∠BED;③∠C=∠B;④AC=EB,將其中兩個作為條件,不能判定△ADC≌△EDB的是
A.①②B.①④C.②③D.②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)舉辦了綠色閱讀節(jié)活動,為了表彰優(yōu)秀,陳老師負(fù)責(zé)購買獎品,在購買時他發(fā)現(xiàn)身上所帶的錢:若以2支鋼筆和3個筆記本為一份獎品,則可買50份獎品;若以2支鋼筆和6本筆記本為一份獎品,則可以買40份獎品,設(shè)鋼筆單價為元/支,筆記本單價為元/支.
(1)請用含的代數(shù)式表示;
(2)若用這筆錢全部購買筆記本,總共可以買幾本?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD是一個長方形,將AD沿某一直線AF(F為折痕與CD邊的交點)折疊,使點D落在BC邊上的某一點E處,請用沒有刻度的直尺與圓規(guī)找出點E與折痕AF,并在折痕AF上找一點P滿足BP+EP最。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,,,點E是射線BC上一動點,將沿AE翻折得到,延長AF交CD的延長線于點G,當(dāng)時,線段DG的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合探究
問題情境:
我們在第十一章《三角形》中學(xué)習(xí)了三角形的邊與角的性質(zhì),在第十二章《全等三角形》中學(xué)習(xí)了全等三角形的性質(zhì)和判定.在一些探究題中經(jīng)常用以上知識轉(zhuǎn)化角和邊,進(jìn)而解決問題.
問題初探:
如圖1,在△ABC中,∠ACB=90°,AC=BC,點D為直線AB上的一個動點(D與A,B不重合),連接CD,以CD為直角邊作等腰直角三角形CDE,連接BE.
(1)當(dāng)點D在線段AB上時,AD與BE的數(shù)量關(guān)系是 ;位置關(guān)系是 ;AB,BD,BE三條線段之間的關(guān)系是 .
類比再探:
(2)如圖2,當(dāng)點D運動到AB的延長線上時,AD與BE還存在(1)中的位置關(guān)系嗎?若存在,請說明理由.同時探索AB,BD,BE三條線段之間的數(shù)量關(guān)系,并說明理由.
能力提升:
(3)如圖3,當(dāng)點D運動到BA的延長線上時,若AB=7,AD=2,則AE= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題發(fā)現(xiàn)
在等腰三角形ABC中,,分別以AB和AC為斜邊,向的外側(cè)作等腰直角三角形,如圖1所示,其中于點F,于點G,M是BC的中點,連接MD和ME.
填空:線段AF,AG,AB之間的數(shù)量關(guān)系是______;
線段MD,ME之間的數(shù)量關(guān)系是______.
拓展探究
在任意三角形ABC中,分別以AB和AC為斜邊向的外側(cè)作等腰直角三角形,如圖2所示,M是BC的中點,連接MD和ME,則MD與ME具有怎樣的數(shù)量關(guān)系和位置關(guān)系?并說明理由;
解決問題
在任意三角形ABC中,分別以AB和AC為斜邊,向的內(nèi)側(cè)作等腰直角三角形,如圖3所示,M是BC的中點,連接MD和ME,若,請直接寫出線段DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P是∠AOB內(nèi)任意一點,OP=6cm,點M和點N分別是射線OA和射線OB上的動點,△PMN周長的最小值是6cm,則∠AOB的度數(shù)是( )
A.25°B.30°
C.60°D.45°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com