【題目】如圖,點(diǎn)P是∠AOB內(nèi)任意一點(diǎn),OP=6cm,點(diǎn)M和點(diǎn)N分別是射線OA和射線OB上的動(dòng)點(diǎn),△PMN周長(zhǎng)的最小值是6cm,則∠AOB的度數(shù)是( )
A.25°B.30°
C.60°D.45°
【答案】B
【解析】
分別作點(diǎn)P關(guān)于OA、OB的對(duì)稱點(diǎn)C、D,連接CD,分別交OA、OB于點(diǎn)M、N,連接OC、OD、PM、PN、MN,由對(duì)稱的性質(zhì)得出PM=DM,OP=OC,∠COA=∠POA;PN=DN,OP=OD,∠DOB=∠POB,得出∠AOB∠COD,證出△OCD是等邊三角形,得出∠COD=60°,即可得出結(jié)果.
分別作點(diǎn)P關(guān)于OA、OB的對(duì)稱點(diǎn)C、D,連接CD,分別交OA、OB于點(diǎn)M、N,連接OC、OD、PM、PN、MN,如圖所示.
∵點(diǎn)P關(guān)于OA的對(duì)稱點(diǎn)為D,關(guān)于OB的對(duì)稱點(diǎn)為C,∴PM=DM,OP=OD,∠DOA=∠POA;
∵點(diǎn)P關(guān)于OB的對(duì)稱點(diǎn)為C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB∠COD.
∵△PMN周長(zhǎng)的最小值是6cm,∴PM+PN+MN=6,∴DM+CN+MN=6,即CD=6=OP,∴OC=OD=CD,即△OCD是等邊三角形,∴∠COD=60°,∴∠AOB=30°.
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市經(jīng)銷一種銷售成本為每件40元的商品.據(jù)市場(chǎng)調(diào)查分析,如果按每件50元銷售,一周能售出500件,若銷售單價(jià)每漲1元,每周銷售量就減少10件.設(shè)銷售單價(jià)為每件x元(x≥50),一周的銷售量為y件.
(1)寫出y與x的函數(shù)關(guān)系式.(標(biāo)明x的取值范圍)
(2)設(shè)一周的銷售利潤(rùn)為S,寫出S與x的函數(shù)關(guān)系式,并確定當(dāng)單價(jià)在什么范圍內(nèi)變化時(shí),利潤(rùn)隨著單價(jià)的增大而增大?
(3)在超市對(duì)該種商品投入不超過(guò)10 000元的情況下,使得一周銷售利潤(rùn)達(dá)到8 000元,銷售單價(jià)應(yīng)定為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為保護(hù)和改善環(huán)境,發(fā)展新經(jīng)濟(jì),國(guó)家出臺(tái)了不限行、不限購(gòu)等諸多新能源汽車優(yōu)惠政策鼓勵(lì)新能源汽車的發(fā)展,為響應(yīng)號(hào)召,某市某汽車專賣店銷售A,B兩種型號(hào)的新能源汽車共25輛,這兩種型號(hào)的新能源汽車的進(jìn)價(jià)、售價(jià)如下表:
進(jìn)價(jià)萬(wàn)元輛 | 售價(jià)萬(wàn)元輛 | |
A型 | 10 | |
B型 | 15 |
如何進(jìn)貨,進(jìn)貨款恰好為325萬(wàn)元?
如何進(jìn)貨,該專賣店售完A,B兩種型號(hào)的新能源汽車后獲利最多且不超過(guò)進(jìn)貨價(jià)的,此時(shí)利潤(rùn)為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)一個(gè)矩形ABCD及給出如下定義:在同一平面內(nèi),如果上存在一點(diǎn),使得這點(diǎn)到矩形ABCD的四個(gè)頂點(diǎn)的距離相等,那么稱矩形ABCD是的“隨從矩形”如圖,在平面直角坐標(biāo)系xOy中,直線l:交x軸于點(diǎn)M,的半徑為4,矩形ABCD沿直線運(yùn)動(dòng)在直線l上,,軸,當(dāng)矩形ABCD是的“隨從矩形”時(shí),點(diǎn)A的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,BC是的直徑,點(diǎn)A在上,點(diǎn)D在CA的延長(zhǎng)線上,,垂足為點(diǎn)E,DE與相交于點(diǎn)H,與AB相交于點(diǎn)過(guò)點(diǎn)A作,與DE相交于點(diǎn)F.
求證:AF為的切線;
當(dāng),且時(shí),求:的值;
如圖2,在的條件下,延長(zhǎng)FA,BC相交于點(diǎn)G,若,求線段EH的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖1,拋物線與x軸交于,兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D為頂點(diǎn).
求拋物線解析式及點(diǎn)D的坐標(biāo);
若直線l過(guò)點(diǎn)D,P為直線l上的動(dòng)點(diǎn),當(dāng)以A、B、P為頂點(diǎn)所作的直角三角形有且只有三個(gè)時(shí),求直線l的解析式;
如圖2,E為OB的中點(diǎn),將線段OE繞點(diǎn)O順時(shí)針旋轉(zhuǎn)得到,旋轉(zhuǎn)角為,連接、,當(dāng)取得最小值時(shí),求直線與拋物線的交點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,對(duì)角線AC⊥BD于點(diǎn)O,且AO=BO=4,CO=8,∠ADB=2∠ACB,則四邊形ABCD的面積為( )
A.48B.42C.36D.32
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC, 點(diǎn)M在△ABC內(nèi),點(diǎn)P在線段MC上,∠ABP=2∠ACM.
(1)若∠PBC=10°,∠BAC=80°,求∠MPB的值
(2)若點(diǎn)M在底邊BC的中線上,且BP=AC,試探究∠A與∠ABP之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com