【題目】已知,如圖,在中,,,分別是的高線(xiàn)和角平分線(xiàn).
(1)若,求的度數(shù);
(2)試寫(xiě)出與有何關(guān)系?(不必證明)
【答案】(1)∠DAE=10°;(2)∠DAE=
【解析】
(1)根據(jù)三角形內(nèi)角和定理求出∠BAC的度數(shù),再根據(jù)角平分線(xiàn)和高線(xiàn)分別求出∠CAE和∠CAD,則∠DAE=∠CAE-∠CAD;
(2)根據(jù)(1)的方法分別表示出∠CAE和∠CAD,即可得出∠DAE與∠C-∠B的關(guān)系.
(1)在△ABC中,
∵∠B=30°,∠C=50°,
∴∠BAC=180°-30°-50°=100°
∵AE平分∠BAC
∴∠CAE=∠BAC=50°,
∵AD⊥BC
∴∠CAD=90°-∠C=90°-50°=40°
∴∠DAE=∠CAE-∠CAD=50°-40°=10°
(2)在△ABC中,
∠BAC=
∵AE平分∠BAC
∴∠CAE=∠BAC=,
∵AD⊥BC
∴∠CAD=90°-∠C
∴∠DAE=∠CAE-∠CAD==
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AB=AC=10cm,BC=8cm,點(diǎn)D為AB的中點(diǎn).
(1)如果點(diǎn)P在線(xiàn)段BC上以3cm/s的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線(xiàn)段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).
①若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1s后,△BPD與△CQP是否全等,請(qǐng)說(shuō)明理由;
②若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD與△CQP全等?
(2)若點(diǎn)Q以②中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來(lái)的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿△ABC三邊運(yùn)動(dòng),求經(jīng)過(guò)多長(zhǎng)時(shí)間點(diǎn)P與點(diǎn)Q第一次在△ABC的哪條邊上相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BD為△ABC外接圓⊙O的直徑,且∠BAE=∠C.
(1)求證:AE與⊙O相切于點(diǎn)A;
(2)若AE∥BC,BC=2,AC=2,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰中,,點(diǎn)在線(xiàn)段上運(yùn)動(dòng)(不與重合),連結(jié),作,交線(xiàn)段于點(diǎn).
(1)當(dāng)時(shí),= °;點(diǎn)從點(diǎn)向點(diǎn)運(yùn)動(dòng)時(shí),逐漸變 (填“大”或“小”);
(2)當(dāng)等于多少時(shí),,請(qǐng)說(shuō)明理由;
(3)在點(diǎn)的運(yùn)動(dòng)過(guò)程中,的形狀也在改變,判斷當(dāng)等于多少度時(shí),是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)的圖象與y軸交于點(diǎn)A,點(diǎn)B(-1,n)是該函數(shù)圖象與反比例函數(shù)(k≠0)圖象在第二象限內(nèi)的交點(diǎn).
(1)求點(diǎn)B的坐標(biāo)及k的值;
(2)試在x軸上確定點(diǎn)C,使AC=AB,請(qǐng)直接寫(xiě)出點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對(duì)于點(diǎn)P(a,b)和點(diǎn)Q(a,b′),給出如下定義:
若b′=,則稱(chēng)點(diǎn)Q為點(diǎn)P的限變點(diǎn).例如:點(diǎn)(2,3)的限變點(diǎn)的坐標(biāo)是(2,3),點(diǎn)(-2,5)的限變點(diǎn)的坐標(biāo)是(-2,-5).
(1)①點(diǎn)(,1)的限變點(diǎn)的坐標(biāo)是 ;
②在點(diǎn)A(-2,-1),B(-1,2)中有一個(gè)點(diǎn)是函數(shù)y=圖象上某一個(gè)點(diǎn)的限變點(diǎn),這個(gè)點(diǎn)是 ;(填“A”或“B”)
(2)若點(diǎn)P在函數(shù)y=-x+3(-2≤x≤k,k>-2)的圖象上,其限變點(diǎn)Q的縱坐標(biāo)b′的取值范圍是-5≤b′≤2,求k的取值范圍 ;
(3)若點(diǎn)P在關(guān)于x的二次函數(shù)y=x2-2tx+t2+t的圖象上,其限變點(diǎn)Q的縱坐標(biāo)b′的取值范圍是b′≥m或b′<n,其中m>n.令s=m-n,求s關(guān)于t的函數(shù)解析式及s的取值范圍 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某人走進(jìn)一家商店,進(jìn)門(mén)付l角錢(qián),然后在店里購(gòu)物花掉當(dāng)時(shí)他手中錢(qián)的一半,走出商店付1角錢(qián);之后,他走進(jìn)第二家商店付1角錢(qián),在店里花掉當(dāng)時(shí)他手中錢(qián)的一半, 走出商店付1角錢(qián);他又進(jìn)第三家商店付l角錢(qián),在店里花掉當(dāng)時(shí)他手中錢(qián)的一半,出店付1角錢(qián);最后他走進(jìn)第四家商店付l角錢(qián),在店里花掉當(dāng)時(shí)他手中錢(qián)的一半, 出店付1角錢(qián),這時(shí)他一分錢(qián)也沒(méi)有了.該人原有錢(qián)的數(shù)目是________角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“端午節(jié)”是我國(guó)的傳統(tǒng)佳節(jié),民間歷來(lái)有吃“粽子”的習(xí)俗.我市某食品廠(chǎng)為了解市民對(duì)去年銷(xiāo)量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛(ài)情況,在節(jié)前對(duì)某居民區(qū)市民進(jìn)行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計(jì)圖(尚不完整).
請(qǐng)根據(jù)以上信息回答:
(1)本次參加抽樣調(diào)查的居民有多少人?
(2)將兩幅不完整的圖補(bǔ)充完整;
(3)若居民區(qū)有8000人,請(qǐng)估計(jì)愛(ài)吃D粽的人數(shù);
(4)若有外型完全相同的A、B、C、D粽各一個(gè),煮熟后,小王吃了兩個(gè).用列表或畫(huà)樹(shù)狀圖的方法,求他第二個(gè)吃到的恰好是C粽的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一個(gè)邊長(zhǎng)為a的大正方形和四個(gè)邊長(zhǎng)為b的全等的小正方形(其中a>2b),按如圖方式擺放,并順次連接四個(gè)小正方形落入大正方形內(nèi)部的頂點(diǎn),得到四邊形ABCD.
下面有四種說(shuō)法:
①陰影部分周長(zhǎng)為4a;
②陰影部分面積為(a+2b)(a-2b);
③四邊形ABCD周長(zhǎng)為8a-4b;
④四邊形ABCD的面積為a24ab4b2.
所有合理說(shuō)法的序號(hào)是____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com