【題目】如圖,已知在Rt△ABC中,AB=AC=3,在△ABC內(nèi)作第一個(gè)內(nèi)接正方形DEFG;然后取GF的中點(diǎn)P,連接PD、PE,在△PDE內(nèi)作第二個(gè)內(nèi)接正方形HIKJ;再取線段KJ的中點(diǎn)Q,在△QHI內(nèi)作第三個(gè)內(nèi)接正方形…依次進(jìn)行下去,則第2014個(gè)內(nèi)接正方形的邊長為____.
【答案】
【解析】
首先根據(jù)勾股定理得出BC的長,進(jìn)而利用等腰直角三角形的性質(zhì)得出DE的長,再利用銳角三角函數(shù)的關(guān)系得出,即可得出正方形邊長之間的變化規(guī)律,得出答案即可.
∵在Rt△ABC中,AB=AC=3,
∴∠B=∠C=45°,BC==6,
∵在△ABC內(nèi)作第一個(gè)內(nèi)接正方形DEFG;
∴EF=EC=DG=BD,
∴DE=BC
∴DE=2,
∵取GF的中點(diǎn)P,連接PD、PE,在△PDE內(nèi)作第二個(gè)內(nèi)接正方形HIKJ;再取線段KJ的中點(diǎn)Q,在△QHI內(nèi)作第三個(gè)內(nèi)接正方形…依次進(jìn)行下去,
∴,
∴EI=KI=HI,
∵DH=EI,
∴HI=DE=()21×2,
則第n個(gè)內(nèi)接正方形的邊長為:2×()n1,
∴則第2014個(gè)內(nèi)接正方形的邊長為2×()20141=2×=.
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+3與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.拋物線y=﹣x2+bx+c經(jīng)過A、B兩點(diǎn),與x軸的另一個(gè)交點(diǎn)為C.
(1)求拋物線的解析式;
(2)點(diǎn)P是第一象限拋物線上的點(diǎn),連接OP交直線AB于點(diǎn)Q.設(shè)點(diǎn)P的橫坐標(biāo)為m,PQ與OQ的比值為y,求y與m的關(guān)系式,并求出PQ與OQ的比值的最大值;
(3)點(diǎn)D是拋物線對稱軸上的一動點(diǎn),連接OD、CD,設(shè)△ODC外接圓的圓心為M,當(dāng)sin∠ODC的值最大時(shí),求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】同時(shí)拋擲兩枚質(zhì)地均勻的正四面體骰子,骰子各個(gè)面的點(diǎn)數(shù)分別是1至4的整數(shù),把這兩枚骰子向下的面的點(diǎn)數(shù)記為(a,b),其中第一枚骰子的點(diǎn)數(shù)記為a,第二枚骰子的點(diǎn)數(shù)記為b.
(1)用列舉法或樹狀圖法求(a,b)的結(jié)果有多少種?
(2)求方程x2+bx+a=0有實(shí)數(shù)解的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xoy中,函數(shù)的圖象與一次函數(shù)y=kx-k的圖象的交點(diǎn)為A(m,2).
(1)求一次函數(shù)的解析式;
(2)設(shè)一次函數(shù)y=kx-k的圖象與y軸交于點(diǎn)B,若P是x軸上一點(diǎn), 且滿足△PAB的面積是4,
直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面坐標(biāo)系中,函數(shù)y=mx+m和y=﹣mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是( 。
A. B. C. D.
【答案】D
【解析】A.由函數(shù)y=mx+m的圖象可知m<0,即函數(shù)y=mx2+2x+2開口方向朝上,與圖象不符,故A選項(xiàng)錯(cuò)誤;
B.由函數(shù)y=mx+m的圖象可知m<0,對稱軸為x=<0,則對稱軸應(yīng)在y軸左側(cè),與圖象不符,故B選項(xiàng)錯(cuò)誤;
C.由函數(shù)y=mx+m的圖象可知m>0,即函數(shù)y=mx2+2x+2開口方向朝下,與圖象不符,故C選項(xiàng)錯(cuò)誤;
D.由函數(shù)y=mx+m的圖象可知m<0,即函數(shù)y=mx2+2x+2開口方向朝上,對稱軸為x=<0,則對稱軸應(yīng)在y軸左側(cè),與圖象相符,故D選項(xiàng)正確;
故選:D.
【題型】單選題
【結(jié)束】
10
【題目】如圖,已知菱形ABCD的周長為16,面積為,E為AB的中點(diǎn),若P為對角線BD上一動點(diǎn),則EP+AP的最小值為( 。
A. 2 B. 2 C. 4 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過△ABC的三個(gè)頂點(diǎn),其中點(diǎn)A(0,1),點(diǎn)B(﹣9,10),AC∥x軸,點(diǎn)P時(shí)直線AC下方拋物線上的動點(diǎn).
(1)求拋物線的解析式;(2)過點(diǎn)P且與y軸平行的直線l與直線AB、AC分別交于點(diǎn)E、F,當(dāng)四邊形AECP的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)當(dāng)點(diǎn)P為拋物線的頂點(diǎn)時(shí),在直線AC上是否存在點(diǎn)Q,使得以C、P、Q為頂點(diǎn)的三角形與△ABC相似,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c的對稱軸為x=﹣1,且過點(diǎn)(﹣3,0),(0,﹣3).
(1)求拋物線的表達(dá)式.
(2)已知點(diǎn)(m,k)和點(diǎn)(n,k)在此拋物線上,其中m≠n,請判斷關(guān)于t的方程t2+mt+n=0是否有實(shí)數(shù)根,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊長為3,∠BAD=60°,點(diǎn)E、F在對角線AC上(點(diǎn)E在點(diǎn)F的左側(cè)),且EF=1,則DE+BF最小值為_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中四邊形OABC是邊長為6的正方形,平行于對角線AC的直線l從O出發(fā),沿x軸正方向以每秒一個(gè)單位長度的速度運(yùn)動,運(yùn)動到直線l與正方形沒有交點(diǎn)為止,設(shè)直線l掃過正方形OABC的面積為S,直線l的運(yùn)動時(shí)間為t(秒),下列能反映S與t之間的函數(shù)圖象的是( 。
A.B.
C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com