計算:+(﹣1)0=   

 

3

【解析】

試題分析:原式=2+1=3

故答案為:3.

考點(diǎn):1、立方根;2、零指數(shù)冪;3、實(shí)數(shù)的運(yùn)算

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(安徽卷)數(shù)學(xué)(解析版) 題型:選擇題

如圖,RtΔABC中,AB=9,BC=6,∠B=90°,將ΔABC折疊,使A點(diǎn)與BC的中點(diǎn)D重合,折痕為MN,則線段BN的長為( )

A. B. C.4 D.5

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(四川達(dá)州卷)數(shù)學(xué)(解析版) 題型:填空題

如圖,折疊矩形紙片ABCD,使點(diǎn)B落在邊AD上,折痕EF的兩端分別在AB、BC上(含端點(diǎn)),且AB=6cm,BC=10cm.則折痕EF的最大值是  cm.

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(四川資陽卷)數(shù)學(xué)(解析版) 題型:解答題

如圖,已知直線l1l2,線段AB在直線l1上,BC垂直于l1交l2于點(diǎn)C,且AB=BC,P是線段BC上異于兩端點(diǎn)的一點(diǎn),過點(diǎn)P的直線分別交l2、l1于點(diǎn)D、E(點(diǎn)A、E位于點(diǎn)B的兩側(cè)),滿足BP=BE,連接AP、CE.

(1)求證:ABPCBE;

(2)連結(jié)AD、BD,BD與AP相交于點(diǎn)F.如圖2.

當(dāng)=2時,求證:APBD;

當(dāng)=n(n>1)時,設(shè)PAD的面積為S1,PCE的面積為S2,求的值.

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(四川資陽卷)數(shù)學(xué)(解析版) 題型:填空題

如圖,以O(shè)(0,0)、A(2,0)為頂點(diǎn)作正OAP1,以點(diǎn)P1和線段P1A的中點(diǎn)B為頂點(diǎn)作正P1BP2,再以點(diǎn)P2和線段P2B的中點(diǎn)C為頂點(diǎn)作P2CP3,…,如此繼續(xù)下去,則第六個正三角形中,不在第五個正三角形上的頂點(diǎn)P6的坐標(biāo)是   

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(四川資陽卷)數(shù)學(xué)(解析版) 題型:選擇題

下列命題中,真命題是( 。

A.一組對邊平行,另一組對邊相等的四邊形是平行四邊形

B.對角線互相垂直的平行四邊形是矩形

C.對角線垂直的梯形是等腰梯形

D.對角線相等的菱形是正方形

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(四川眉山卷)數(shù)學(xué)(解析版) 題型:解答題

如圖,在RtABC中,C=90°,RtBAP中,BAP=90°,已知CBO=ABP,BP交AC于點(diǎn)O,E為AC上一點(diǎn),且AE=OC.

(1)求證:AP=AO;

(2)求證:PEAO;

(3)當(dāng)AE=AC,AB=10時,求線段BO的長度.

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(四川眉山卷)數(shù)學(xué)(解析版) 題型:選擇題

一個立體圖形的三視圖如圖所示,根據(jù)圖中數(shù)據(jù)求得這個立體圖形的側(cè)面積為( )

A. B. C. D.

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(四川成都卷)數(shù)學(xué)(解析版) 題型:填空題

在邊長為1的小正方形組成的方格紙中,稱小正方形的頂點(diǎn)為“格點(diǎn)”,頂點(diǎn)全在格點(diǎn)上的多邊形為“格點(diǎn)多邊形”.格點(diǎn)多邊形的面積記為S,其內(nèi)部的格點(diǎn)數(shù)記為N,邊界上的格點(diǎn)數(shù)記為L,例如,圖中的三角形ABC是格點(diǎn)三角形,其中S=2,N=0,L=6;圖中格點(diǎn)多邊形DEFGHI所對應(yīng)的S,N,L分別是 _.經(jīng)探究發(fā)現(xiàn),任意格點(diǎn)多邊形的面積S可表示為S=aN+bL+c,其中a,b,c為常數(shù),則當(dāng)N=5,L=14時,S= .(用數(shù)值作答)

 

 

查看答案和解析>>

同步練習(xí)冊答案