如圖,一次函數(shù)y=x+2的圖象分別交軸、軸于A、B兩點(diǎn),O1為以O(shè)B為邊長(zhǎng)的正方形OBCD的對(duì)角線的交點(diǎn).兩動(dòng)點(diǎn)P、Q同時(shí)從A點(diǎn)出發(fā)在四邊形ABCD上運(yùn)動(dòng),其中動(dòng)點(diǎn)P以每秒
2
個(gè)單位長(zhǎng)度的速度沿A→B→A運(yùn)動(dòng)后停止,動(dòng)點(diǎn)Q以每秒2個(gè)單位長(zhǎng)度的速度沿A→O→D→C→B運(yùn)動(dòng).AO1交于軸于點(diǎn)E,設(shè)P、Q運(yùn)動(dòng)的時(shí)間為t秒.
(1)求經(jīng)過(guò)A、B、C三點(diǎn)的拋物線的解析式;
(2)求出E點(diǎn)的坐標(biāo)和S△ABE的值;
(3)當(dāng)Q點(diǎn)運(yùn)動(dòng)在折線AD→DC上時(shí),是否存在某一時(shí)刻t(秒),使得S△ABE:S△APQ=4:3?若存在,請(qǐng)確定t的值;若不存在,請(qǐng)說(shuō)明理由.
(1)在y=x+2中,令y=0,則x=-2.令x=0,則y=2,
∴A(-2,0),B(0,2),
∴BO=2,
∴OD=2,
∴C(2,2).
設(shè)過(guò)A、B、C三點(diǎn)的拋物線的解析式為y=ax2+bx+c(a≠0),
c=2
4a+2b+c=2
4a-2b+c=-2

a=-
1
4
b=
1
2
c=2

∴函數(shù)的解析式是:y=-
1
4
x2+
1
2
x+2;

(2)設(shè)直線AO的解析式為y=kx+m,
∵A(-2,0),O1(1,1),
-2k+m=0
k+m=1

k=
1
3
m=
2
3

∴y=
1
3
x+
2
3

∴E的坐標(biāo)是(0,
2
3
);
∴BE=BO-EO=2-
2
3
=
4
3

∴S△ABE=
1
2
BE•AO=
1
2
×
4
3
×2=
4
3


(3)當(dāng)0≤t≤2時(shí),Q在AD上,P從A到B運(yùn)動(dòng).
過(guò)P作PH⊥x軸于點(diǎn)H,
則AQ=2t,AP=
2
t,
∴AH=PH=t,
∴S△APQ=
1
2
AQ•PH=
1
2
•2t•t=t2
∵S△ABE:S△APQ=4:3,
∴S△APQ=1,
∴t2=1.
∵0≤t≤2,
∴t=1.
當(dāng)2<t≤3時(shí),Q在DC上,P從B向A運(yùn)動(dòng).延長(zhǎng)AB、DC交于點(diǎn)F.
過(guò)Q作QM⊥AF于M,則∠F=∠BAD=45°,
∴MQ=
2
2
QF.
∵DQ=2t-4,DF=AD=4,
∴QF=4-DQ=8-2t,
∴QM=
2
2
(8-2t).
又AP=2AB-
2
t=4
2
-
2
t,
∴S△APQ=
1
2
AP•QM=
1
2
(4
2
-
2
t)•
2
2
(8-2t)=1
∴(4-t)2=1,
∵2<t≤3,
∴4-t=1,
∴t=3,
故當(dāng)t=1和3時(shí),S△ABE:S△APQ=4:3.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知△ABC內(nèi)接于半徑為4的☉0,過(guò)0作BC的垂線,垂足為F,且交☉0于P、Q兩點(diǎn).OD、OE的長(zhǎng)分別是拋物線y=x2+2mx+m2-9與x軸的兩個(gè)交點(diǎn)的橫坐標(biāo).
(1)求拋物線的解析式;
(2)是否存在直線l,使它經(jīng)過(guò)拋物線與x軸的交點(diǎn),并且原點(diǎn)到直線l的距離是2?如果存在,請(qǐng)求出直線l的解析式;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,隧道的截面由拋物線AED和矩形ABCD構(gòu)成,矩形的長(zhǎng)BC為8m,寬AB為2m,以BC所在的直線為x軸,線段BC的中垂線為y軸,建立平面直角坐標(biāo)系.y軸是拋物線的對(duì)稱軸,頂點(diǎn)E到坐標(biāo)原點(diǎn)O的距離為6m.
(1)求拋物線的解析式;
(2)如果該隧道內(nèi)設(shè)雙行道,現(xiàn)有一輛貨運(yùn)卡車高4.2m,寬2.4米,這輛貨運(yùn)卡車能否通過(guò)該隧道?通過(guò)計(jì)算說(shuō)明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知拋物線經(jīng)過(guò)點(diǎn)(1,0),(-5,0),且頂點(diǎn)縱坐標(biāo)為
9
2
,這個(gè)二次函數(shù)的解析式______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,鉛球運(yùn)動(dòng)員擲鉛球的高度y(m)與水平距離x(m)之間的函數(shù)關(guān)系式是y=-
1
12
x2+
2
3
x+
5
3
,則該運(yùn)動(dòng)員此次擲鉛球的成績(jī)是______m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,拋物線y=
1
18
x2-
4
9
x-10與y軸的交點(diǎn)為點(diǎn)B,過(guò)點(diǎn)B作x軸的平行線BC,交拋物線于點(diǎn)C,連接AC.現(xiàn)有兩動(dòng)點(diǎn)P,Q分別從O,C兩點(diǎn)同時(shí)出發(fā),點(diǎn)P以每秒4個(gè)單位的速度沿OA向終點(diǎn)A移動(dòng),點(diǎn)Q以每秒1個(gè)單位的速度沿CB向點(diǎn)B移動(dòng),點(diǎn)P停止運(yùn)動(dòng)時(shí),點(diǎn)Q也同時(shí)停止運(yùn)動(dòng),線段OC,PQ相交于點(diǎn)D,過(guò)點(diǎn)D作DEOA,交CA于點(diǎn)E,射線QE交x軸于點(diǎn)F.設(shè)動(dòng)點(diǎn)P,Q移動(dòng)的時(shí)間為t(單位:秒).
(1)求A,B,C三點(diǎn)的坐標(biāo)和拋物線的頂點(diǎn)的坐標(biāo);
(2)當(dāng)t為何值時(shí),四邊形PQCA為平行四邊形?請(qǐng)寫出計(jì)算過(guò)程;
(3)當(dāng)0<t<
9
2
時(shí),△PQF的面積是否總為定值?若是,求出此定值,若不是,請(qǐng)說(shuō)明理由;
(4)當(dāng)t為何值時(shí),△PQF為等腰三角形?請(qǐng)寫出解答過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,以x軸上一點(diǎn)P(1,0)為圓心的圓與x軸、y軸分別交于A、B、C、D四點(diǎn),點(diǎn)C的坐標(biāo)為(0,
3
).
(1)直接寫出A、B、D三點(diǎn)坐標(biāo);
(2)若拋物線y=x2+bx+c過(guò)A、D兩點(diǎn),求這條拋物線的解析式,并判斷點(diǎn)B是否在所求的拋物線上,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=ax2-x-
3
2
與x軸正半軸交于點(diǎn)A(3,0),以O(shè)A為邊在x軸上方作正方形OABC,延長(zhǎng)CB交拋物線于點(diǎn)D,再以BD為邊向上作正方形BDEF.
(1)求a的值;
(2)求點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,已知拋物線y1=-2x2+2,直線y2=2x+2,當(dāng)x任取一值時(shí),x對(duì)應(yīng)的函數(shù)值分別為y1,y2.若y1≠y2,取y1,y2中的較小值記為M;若y1=y2,記M=y1=y2.例如:當(dāng)x=1時(shí),y1=0,y2=4,y1<y2,此時(shí)M=0.那么使得M=1的x值為_(kāi)_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案