【題目】如圖所示,的直徑,點延長線上的一點,過點作的切線,切點為,連接.

1)若,求的長;

2)若點的延長線上運動,的平分線交于點,你認為的大小是否發(fā)生變化?若變化,請說明理由;若不變化,求出的大小.

【答案】12 ;(2的大小沒有變化,45°,理由見解析.

【解析】

1)作輔助線,連接OC,根據(jù)切線的性質(zhì)知:OCPC,由∠CPO的值和OC的長,可將PC的長求出;

2)通過角之間的轉(zhuǎn)化,可知:∠CMP(∠COP+∠CPO),

故∠CMP的值不發(fā)生變化.

解:(1)連接,

,∴

的切線,

;

2的大小沒有變化.

理由如下:∵(三角形外角定理),(同弧所對的圓周角是所對的圓心角的一半),

(角平分線的性質(zhì)),

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+x+2與x軸交于點A,B,與y軸交于點C.

(1)試求A,B,C的坐標(biāo);

(2)將ABC繞AB中點M旋轉(zhuǎn)180°,得到BAD.3

求點D的坐標(biāo);

判斷四邊形ADBC的形狀,并說明理由;

(3)在該拋物線對稱軸上是否存在點P,使BMP與BAD相似?若存在,請直接寫出所有滿足條件的P點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線MN與以AB為直徑的半圓相切于點C,∠A28°.

(1)求∠ACM的度數(shù);

(2)MN上是否存在一點D,使ABCDACBC,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:關(guān)于x的方程:mx2﹣(3m1x+2m2=0

1)求證:無論m取何值時,方程恒有實數(shù)根;

2)若關(guān)于x的二次函數(shù)y=mx2﹣(3m1x+2m2的圖象與x軸兩交點間的距離為2時,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過點A(﹣20),點B04.

1)求這條拋物線的表達式;

2P是拋物線對稱軸上的點,聯(lián)結(jié)AB、PB,如果∠PBO=BAO,求點P的坐標(biāo);

3)將拋物線沿y軸向下平移m個單位,所得新拋物線與y軸交于點D,過點DDEx軸交新拋物線于點E,射線EO交新拋物線于點F,如果EO=2OF,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A′B′C′∽△ABC,且A′E′,AE是角平分線,A′D′,AD是中線.求證:A′D′E′∽△ADE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個圓柱體形零件,削去了占底面圓的四分之一部分的柱體(如圖),現(xiàn)已畫出了主視圖與俯視圖.

(1)請只用直尺和圓規(guī),將此零件的左視圖畫在規(guī)定的位置(不必寫作法,只須保留作圖痕跡)

(2)若此零件底面圓的半徑r2cm,高h3cm,求此零件的表面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解九年級學(xué)生體育測試情況,以九年級(1)班學(xué)生的體育測試成績?yōu)闃颖荆?/span>AB,CD四個等級進行統(tǒng)計,并將統(tǒng)計結(jié)果繪制成如下的統(tǒng)計圖,請你結(jié)合圖中所給信息解答下列問題:

(說明:A級:90分~100分;B級:75分~89分;C級:60分~74分;D級:60分以下)

1)請把條形統(tǒng)計圖補充完整;

2)扇形統(tǒng)計圖中D級所在的扇形的圓心角度數(shù)是多少?

3)若該校九年級有600名學(xué)生,請用樣本估計體育測試中A級學(xué)生人數(shù)約為多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角ABC中,A為直角,AB6AC8.點P、Q、R分別在AB、BC、CA邊上同時開始作勻速運動,2秒后三個點同時停止運動,點P由點A出發(fā)以每秒3個單位的速度向點B運動,點Q由點B出發(fā)以每秒5個單位的速度向點C運動,點R由點C出發(fā)以每秒4個單位的速度向點A運動,用t(秒)(0≤t≤2)表示運動時間,在運動過程中:

1)當(dāng)t為何值時,APR的面積為4;

2)求出CRQ的最大面積;

3)是否存在t,使PQR90°?若存在,請求出t的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案