【題目】如圖所示,AD是△ABC的邊BC的中線.
(1)畫(huà)出以點(diǎn)D為對(duì)稱(chēng)中心,與△ABD成中心對(duì)稱(chēng)的三角形;
(2)若AB=10,AC=12,求AD長(zhǎng)的取值范圍.
【答案】(1)圖形見(jiàn)解析.
(2)1<AD<11.
【解析】試題分析:延長(zhǎng)AD使AD=DE,再連接DE、CE即可得到三角形ECD,則△ECD與△ABD成中心對(duì)稱(chēng).(2)△ECD與△ABD成中心對(duì)稱(chēng).所以AB=CE=10,所以在△ACE中,12-10<AE<12+10,又因AE=2AD,所以1<AD<11.
(1)如圖,△DCE為所求.
(2) 因?yàn)椤鱁CD與△ABD成中心對(duì)稱(chēng).所以AB=CE=10,所以在△ACE中,12-10<AE<12+10,又因AE=2AD,所以1<AD<11.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀解題過(guò)程,回答問(wèn)題.
如圖,OC在∠AOB內(nèi),∠AOB和∠COD都是直角,且∠BOC=30°,求∠AOD的度數(shù).
解:過(guò)O點(diǎn)作射線OM,使點(diǎn)M,O,A在同一直線上.
因?yàn)椤?/span>MOD+∠BOD=90°,∠BOC+∠BOD=90°,所以∠BOC=∠MOD,
所以∠AOD=180°-∠BOC=180°-30°=150°.
(1)如果∠BOC=60°,那么∠AOD等于多少度?如果∠BOC=n°,那么∠AOD等于多少度?
(2)如果∠AOB=∠DOC=x°,∠AOD=y°,求∠BOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖
① ∵
∴ ______// _____(______________________)
② ∵∠DAB+∠ABC=180°
∴ _____// _____(__________________)
③∵ AB // CD
∴∠_____+∠ABC=180°(___________________)
④∵ ______// ______
∴∠C=∠3(_______________________)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都為1.
(1)試作出直角坐標(biāo)系,使點(diǎn)A的坐標(biāo)為(2,-1);
(2)在(1)中建立的直角坐標(biāo)系中描出點(diǎn)B(3,4),C(0,1),并求三角形ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O的內(nèi)接四邊形ABCD中,∠BCD=120°,AC平分∠BCD.
(1)求證:△ABD是等邊三角形;
(2)若BD=6cm,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明利用燈光下自己的影子長(zhǎng)度來(lái)測(cè)量路燈的高度.如圖,CD和EF是兩等高的路燈,相距27m,身高1.5m的小明(AB)站在兩路燈之間(D、B、F共線),被兩路燈同時(shí)照射留在地面的影長(zhǎng)BQ=4m,BP=5m.
(1)小明距離路燈多遠(yuǎn)?
(2)求路燈高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,半徑均為1個(gè)單位長(zhǎng)度的半圓O1、O2、O3,…組成一條平滑的曲線,點(diǎn)P從原點(diǎn)O出發(fā),沿這條曲線向右運(yùn)動(dòng),速度為每秒個(gè)單位長(zhǎng)度,則第2015秒時(shí),點(diǎn)P的坐標(biāo)是( )
A. (2014,0) B. (2015,﹣1) C. (2015,1) D. (2016,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,BC∥OA,∠B=∠A=100°,點(diǎn)E、F在BC上,OE平分∠BOF,且∠FOC=∠AOC,下列結(jié)論中正確的是___________:
①OB∥AC ②∠EOC=45°
③∠OCB:∠OFB=1:3 ④若∠OEB=∠OCA,則∠OCA=60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】春節(jié)期間,七年級(jí)(1)班的明明、麗麗等同學(xué)隨家長(zhǎng)一同到某公園游玩,如圖是購(gòu)買(mǎi)門(mén)票時(shí),明明與他爸爸的對(duì)話(huà),試根據(jù)圖中的信息,解答下列問(wèn)題:
(1)明明他們一共去了幾個(gè)成人?幾個(gè)學(xué)生?
(2)請(qǐng)你幫助明明算一算,用哪種方式購(gòu)票更省錢(qián)?
(3)購(gòu)?fù)昶焙,明明發(fā)現(xiàn)七年級(jí)(2)班的張小濤等8個(gè)學(xué)生和他們的12個(gè)家長(zhǎng)共20人也來(lái)購(gòu)票,請(qǐng)你為他們?cè)O(shè)計(jì)出最省錢(qián)的購(gòu)票方案,并求出此時(shí)的購(gòu)票費(fèi)用。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com