【題目】如圖,Rt△ABC中,∠C=90°,∠A=30°.
(1)作線段AB的垂直平分線DE,垂足為點E,交AC于點D,要求用尺規(guī)作圖,保留作圖痕跡,標(biāo)注有關(guān)字母,不要求寫作法和證明;
(2)連接BD,直接寫出∠CBD的度數(shù);
(3)如果△BCD的面積為4,請求出△BAD的面積.
【答案】(1)詳見解析;(2)30°;(3)8.
【解析】
(1)利用基本作圖,作AB的垂直平分線即可;
(2)利用垂直平分線的性質(zhì)得DA=DB,則∠DBA=∠A=30°,然后計算∠ABC-∠DBA即可;
(3)在Rt△BCD中利用含30度的直角三角形三邊的關(guān)系得到DB=2CD,則DA=2CD,然后根據(jù)三角形面積公式得到S△ABD=2S△BCD=8.
(1)如圖,DE為所作;
(2)∵DE垂直平分AB,
∴DA=DB,
∴∠DBA=∠A=30°,
∵∠ABC=90°﹣∠A=60°,
∴∠CBD=∠ABC﹣∠DBA=60°﹣30°=30°;
(3)在Rt△BCD中,∵∠CBD=30°,
∴DB=2CD,
而DA=DB,
∴DA=2CD,
∴S△ABD=2S△BCD=8.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把下列各數(shù)填在相應(yīng)的大括號里
,,,,,,,,,,
正數(shù)集合{ …}
非負(fù)整數(shù)集合{ …}
負(fù)分?jǐn)?shù)集合{ …}
有理數(shù)集合{ …}.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,①任意有理數(shù)的倒數(shù)是,②相反數(shù)等于自身的數(shù)只有一個,③海拔-155米表示海平面下155米,④絕對值大于本身的數(shù)一定是負(fù)數(shù),⑤零是最小的自然數(shù),⑥有理數(shù)包含正有理數(shù)和負(fù)有理數(shù),⑦任意有理數(shù)的相反數(shù)是.正確的有( )個
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰RtABC中,,點P在以斜邊AB為直徑的半圓上,M為PC的中點.當(dāng)點P沿半圓從點A運動至點B時,點M運動的路徑長是( )
A. B. 2 C. D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,BC=BD,AD=DE=EB,則∠A的度數(shù)是( 。
A.30°B.36°C.45°D.50°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把一個直角三角形ACB(∠ACB=90°)繞著頂點B順時針旋轉(zhuǎn)60°,使得點C旋轉(zhuǎn)到AB邊上的一點D,點A旋轉(zhuǎn)到點E的位置.F,G分別是BD,BE上的點,BF=BG,延長CF與DG交于點H.
(1)求證:CF=DG;
(2)求出∠FHG的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:∠BAC的平分線與BC的垂直平分線DG相交于點D,DE⊥AB,DF⊥AC,垂足分別為E、F,AB=6,AC=3,則BE=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸交于點C,與軸交于點B,與反比例函數(shù)的圖象在第一象限交于點A,連接OA,且.
(1)求ΔBOC的面積.
(2)求點A的坐標(biāo)和反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)3.3 ,-2 ,0 , ,-3.5 ;
(1) 比較這些數(shù)的絕對值的大小,并將這些數(shù)的絕對值用“>”號連接起來;
(2) 比較這些數(shù)的相反數(shù)的大小,并將這些數(shù)的相反數(shù)用“<”號連接起來.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com