【題目】如圖,將放在平面直角坐標系中,點,點,點動點從點開始沿邊向點以1個單位長度的速度運動,同一時間,動點從點開始沿邊向點以每秒2個單位長度的速度運動,當其中一點到達端點時,另一點也隨之停止運動.過點作,交于點,連接,設運動時間為秒(t.
(Ⅰ)用含的代數式表示;
(Ⅱ)①是否存在的值,使四邊形為平行四邊形?若存在,求出的值;若不存在,說明理由;
②是否存在的值,使四邊形為菱形?若存在,求出的值;若不存在,說明理由.
(Ⅲ)在整個運動過程中,求出線段的中點所經過的路徑長.(直接寫出結果即可).
【答案】(Ⅰ);(Ⅱ)①存在,;②不存在,四邊形不能為菱形,見解析;(Ⅲ)線段中點所經過的路徑長為.
【解析】
(Ⅰ)根據題意得到OQ=2t,AP=t,求出BQ=8-2t,證明△ADP∽△ABO,根據相似三角形的性質求出PD;
(Ⅱ)①根據平行四邊形的判定方法得出BQ=DP,列出關于t的方程,解方程即可;②先根據勾股定理得出AB的長,再根據平行線分線段成比例定理可得AD=,,根據①中是平行四邊形時t的值求出PD和BD的值即可判定.
(Ⅲ)根據點Q在BO上運動,點P在AO上運動,得出線段PQ的中點M的運動路徑為一條線段,確定點Q分別與點O、點B重合時PQ的中點M的位置,再進一步求解可得.
解:(I)∵點,點,
∴, ,
且由題意, , ,
∵,
∴,
又,, ,
∴
∴.
(Ⅱ)①∵,若,
∴則四邊形是平行四邊形,
即,解得:.
∴當時,∴四邊形為平行四邊形.
②不存在,理由如下:
∵, ,
∴在中, ,
∵,∴,,,
∴當,四邊形為平行四邊形時,
,
∴,
∴四邊形PDBC不能為菱形.
(Ⅲ))∵點Q在BO上運動,點P在AO上運動,
∴線段PQ的中點M的運動路徑為一條線段,
∵當Q在點O時,點P在點A處,
∵點M為PQ的中點
∴OM=PQ=,
∵當Q在點B時,AP=4,則OP=2
此時,連接PQ,取PQ的中點,過作OA于E,
∴OE=1,
∴EM=2,
∵AO⊥BO、E⊥OA,
∴E∥BO,
∵為PQ的中點,
∴E為△BOP的中位線,
∴E=BO=4,
點M的運動路徑為M==2.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形AOCB的兩邊OA、OC分別在x軸和y軸上,且OA=2,OC=1.在第二象限內,將矩形AOCB以原點O為位似中心放大為原來的倍,得到矩形A1OC1B1,再將矩形A1OC1B1以原點O為位似中心放大倍,得到矩形A2OC2B2…,以此類推,得到的矩形AnOCnBn的對角線交點的坐標為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知二次函數的圖象經過點A(-3,6),并與x軸交于點B(-1,0)和點C,頂點為點P.
(1)求這個二次函數解析式;
(2)設D為x軸上一點,滿足∠DPC=∠BAC,求點D的坐標;
(3)作直線AP,在拋物線的對稱軸上是否存在一點M,在直線AP上是否存在點N,使AM+MN的值最小?若存在,求出M、N的坐標:若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】第一個盒子中有2個白球,1個黃球,第二個盒子中有1個白球,1個黃球,這些球除顏色外都相同,分別從每個盒中隨機取出一個球.
(1)求取出的兩個球中一個是白球,一個是黃球的概率;
(2)若第一個盒子中有2個白球,1個黃球,第二個盒子中有1個白球,1個黃球,其他條件不變,則取出的兩個球都是黃球的概率為________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在每個小正方形的邊長為1的網格中,有,點都在格點上
(I)的面積等于__________;
(Ⅱ)求作其內接正方形,使其一邊在上,另兩個頂點各在上在如圖所示的網格中,請你用無刻度的直尺畫出該正方形,并簡要說明畫圖的方法(不要求證明)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為選拔一名選手參加“美麗邵陽,我為家鄉(xiāng)做代言”主題演講比賽,經研究,按圖所示的項目和權數對選拔賽參賽選手進行考評(因排版原因統(tǒng)計圖不完整).下表是李明、張華在選拔賽中的得分情況:
項目 選手 | 服裝 | 普通話 | 主題 | 演講技巧 |
李明 | 85 | 70 | 80 | 85 |
張華 | 90 | 75 | 75 | 80 |
結合以上信息,回答下列問題:
(1)求服裝項目的權數及普通話項目對應扇形的圓心角大小;
(2)求李明在選拔賽中四個項目所得分數的眾數和中位數;
(3)根據你所學的知識,幫助學校在李明、張華兩人中選擇一人參加“美麗邵陽,我為家鄉(xiāng)做代言”主題演講比賽,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為⊙O直徑,P點為半徑OA上異于O點和A點的一個點,過P點作與直徑AB垂直的弦CD,連接AD,作BE⊥AB,OE∥AD交BE于E點,連接AE、DE、AE交CD于F點.
(1)求證:DE為⊙O切線;
(2)若⊙O的半徑為3,sin∠ADP=,求AD;
(3)請猜想PF與FD的數量關系,并加以證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某個周末,小麗從家去園博園參觀,同時媽媽參觀結束從園博園回家,小麗剛到園博園就發(fā)現要下雨,于是立即按原路返回,追上媽媽后,兩人一同回家(小麗和媽媽始終在同一條筆直的公路上行走)如圖是兩人離家的距離y(米)與小麗出發(fā)的時間x(分)之間的函數圖象,請根據圖象信息回答下列問題:
(1)求線段BC的解析式;
(2)求點F的坐標,并說明其實際意義;
(3)與按原速度回家相比,媽媽提前了幾分鐘到家?并直接寫出小麗與媽媽何時相距800米.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,ED切⊙O于點C,AD交⊙O于點F,連接AC,BF,且BF∥CD.
(1)求證:AC平分∠BAD;
(2)若⊙O的半徑為,AF=2,求CD的長度.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com