【題目】2014年我省財政收入比2013年增長8.9%,2015年比2014年增長9.5%,若2013年和2015年我省財政收入分別為a億元和b億元,則a、b之間滿足的關(guān)系式為( 。
A.B.
C.D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=﹣2x+4分別交x軸、y軸于點A、B,拋物線y=﹣2x2+bx+c過A,B兩點,點P是線段AB上一動點,過點P作PC⊥x軸于點C,交拋物線于點D,拋物線的頂點為M,其對稱軸交AB于點N.
(1)求拋物線的表達(dá)式及點M、N的坐標(biāo);
(2)是否存在點P,使四邊形MNPD為平行四邊形?若存在求出點P的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)的圖象經(jīng)過點A(2,6).
(1)求這個反比例函數(shù)的解析式;
(2)這個函數(shù)的圖象位于哪些象限?y隨x的增大如何變化?
(3)點B(3,4),C(5,2),D(,)是否在這個函數(shù)圖象上?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線頂點坐標(biāo)為(2,﹣4),且與x軸交于原點和點C,對稱軸與x軸交點為M.
(1)求拋物線的解析式;
(2)A點在拋物線上,且A點的橫坐標(biāo)為﹣2,在拋物線對稱軸上找一點B,使得AB與CB的差最大,求B點的坐標(biāo);
(3)P點在拋物線的對稱軸上,且P點的縱坐標(biāo)為8.探究:在拋物線上是否存在點Q使得O、M、P、Q四點共圓,若存在求出Q點坐標(biāo);若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】大學(xué)生小李和同學(xué)一起自主創(chuàng)業(yè)開辦了一家公司,公司對經(jīng)營的盈虧情況在每月的最后一天結(jié)算一次.在1-12月份中,該公司前x個月累計獲得的總利潤y(萬元)與銷售時間x(月)之間滿足二次函數(shù)關(guān)系.
(1)求y與x函數(shù)關(guān)系式.
(2)該公司從哪個月開始“扭虧為盈”(當(dāng)月盈利)? 直接寫出9月份一個月內(nèi)所獲得的利潤.
(3)在前12 個月中,哪個月該公司所獲得利潤最大?最大利潤為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形的頂點是坐標(biāo)原點,點在第一象限,點在第四象限,點在軸的正半軸上,且.
(1)求點和點的坐標(biāo);
(2)點是線段上的一個動點(點不與點重合) ,以每秒個單位的速度由點向點運動,過點的直線與軸平行,直線交邊或邊于點,交邊或邊于點,設(shè)點.運動時間為,線段的長度為,已知時,直線恰好過點 .
①當(dāng)時,求關(guān)于的函數(shù)關(guān)系式;
②點出發(fā)時點也從點出發(fā),以每秒個單位的速度向點運動,點停止時點也停止.設(shè)的面積為 ,求與的函數(shù)關(guān)系式;
③直接寫出②中的最大值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=a(x+2)(x﹣4)與x軸交于A,B兩點,與y軸交于點C,且∠ACO=∠CBO.
(1)求線段OC的長度;
(2)若點D在第四象限的拋物線上,連接BD、CD,求△BCD的面積的最大值;
(3)若點P在平面內(nèi),當(dāng)以點A、C、B、P為頂點的四邊形是平行四邊形時,直接寫出點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在反比例函數(shù)y=(x>0)的圖象上,有點P1、P2、P3、P4,它們的橫坐標(biāo)依次為1,2,3,4.分別過這些點作x軸與y軸的垂線,圖中所構(gòu)成的陰影部分的面積從左到右依次為S1、S2、S3,則S1+S2+S3=( )
A.2B.2.5C.3D.無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在由邊長為1個單位長度的小正方形組成的網(wǎng)格圖中,△ABC的頂點都在網(wǎng)格線交點上.
(1)圖中AC邊上的高為 個單位長度;
(2)只用沒有刻度的直尺,在所給網(wǎng)格圖中按如下要求畫圖(保留必要痕跡):
①以點C為位似中心,把△ABC按相似比1:2縮小,得到△DEC;
②以AB為一邊,作矩形ABMN,使得它的面積恰好為△ABC的面積的2倍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com