【題目】已知二次函數(shù)的解析式為(、、為常數(shù),),且,下列說法:①;②;③方程有兩個(gè)不同根、,且;④二次函數(shù)的圖象與坐標(biāo)軸有三個(gè)不同交點(diǎn),其中正確的個(gè)數(shù)是( ).
A.1B.2C.3D.4
【答案】B
【解析】
根據(jù)a的符號(hào)分類討論,分別畫出對(duì)應(yīng)的圖象,根據(jù)二次函數(shù)的圖象逐一分析,找出所有情況下都正確的結(jié)論即可.
解:當(dāng)a>0時(shí),即拋物線的開口向上
∵
∴,
即當(dāng)x=1時(shí),y=
∴此時(shí)拋物線與x軸有兩個(gè)交點(diǎn),如圖所示
∴,故①錯(cuò)誤;
∵
∴,故此時(shí)②正確;
由圖象可知:x1<1,x2>1
∴
∴,故此時(shí)③正確;
當(dāng)c=0時(shí),二次函數(shù)的圖象與坐標(biāo)軸有兩個(gè)不同交點(diǎn),故④錯(cuò)誤;
當(dāng)a<0時(shí),即拋物線的開口向下
∵
∴,
即當(dāng)x=1時(shí),y=
∴此時(shí)拋物線與x軸有兩個(gè)交點(diǎn),如圖所示
∴,故①錯(cuò)誤;
∵
∴,故此時(shí)②正確;
由圖象可知:x1<1,x2>1
∴
∴,故此時(shí)③正確;
當(dāng)c=0時(shí),二次函數(shù)的圖象與坐標(biāo)軸有兩個(gè)不同交點(diǎn),故④錯(cuò)誤;
綜上所述:①錯(cuò)誤;②正確;③正確;④錯(cuò)誤,正確的有2個(gè)
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)在直線上,過點(diǎn)作軸于點(diǎn),作等腰直角三角形(與原點(diǎn)重合),再以為腰作等腰直角三角形;以為腰作等腰直角三角形…;按照這樣的規(guī)律進(jìn)行下去,那么的坐標(biāo)為()
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)將進(jìn)價(jià)40元一個(gè)的某種商品按50元一個(gè)售出時(shí),每月能賣出500個(gè).商場(chǎng)想了兩個(gè)方案來增加利潤(rùn):
方案一:提高價(jià)格,但這種商品每個(gè)售價(jià)漲價(jià)1元,銷售量就減少10個(gè);
方案二:售價(jià)不變,但發(fā)資料做廣告.已知當(dāng)這種商品每月的廣告費(fèi)用為m(千元)時(shí),每月銷售量將是原銷售量的p倍,且p =.
試通過計(jì)算,請(qǐng)你判斷商場(chǎng)為賺得更大的利潤(rùn)應(yīng)選擇哪種方案?請(qǐng)說明你判斷的理由!
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“停課不停學(xué),學(xué)習(xí)不延期”,某市通過教育資源公共服務(wù)平臺(tái)和有線電視為全市中小學(xué)開設(shè)在線“空中課堂”,為了解學(xué)生每天的學(xué)習(xí)時(shí)間情況,在全市隨機(jī)抽取了部分初中學(xué)生進(jìn)行問卷調(diào)查,現(xiàn)將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖表,請(qǐng)根據(jù)圖表中的信息解答下列問題:
組別 | 學(xué)習(xí)時(shí)間x(h) | 人數(shù)(人) |
A | 2.5<x≤3 | 40 |
B | 3<x≤3.5 | 170 |
C | 3.5<x≤4 | 350 |
D | 4<x≤4.5 | |
E | 4.5<x≤5 | 90 |
F | 5小時(shí)以上 | 50 |
(1)這次參與問卷調(diào)查的初中學(xué)生有 人,中位數(shù)落在 組.
(2)補(bǔ)全條形統(tǒng)計(jì)圖.
(3)若此市有初中學(xué)生2.8萬人,求每天參與“空中課堂”學(xué)習(xí)時(shí)間3.5到4.5小時(shí)(不包括3.5小時(shí))的初中學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD是一塊邊長(zhǎng)為4米的正方形苗圃,園林部門擬將其改造為矩形AEFG的形狀,其中點(diǎn)E在AB邊上,點(diǎn)G在AD的延長(zhǎng)線上,DG= 2BE.設(shè)BE的長(zhǎng)為x米,改造后苗圃AEFG的面積為y平方米.
(1)求y與x之間的函數(shù)關(guān)系式(不需寫自變量的取值范圍);
(2)根據(jù)改造方案,改造后的矩形苗圃AEFG的面積與原正方形苗圃ABCD的面積相等,請(qǐng)問此時(shí)BE的長(zhǎng)為多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知是等邊三角形的外接圓,點(diǎn)在圓上,在的延長(zhǎng)線上有一點(diǎn),使,交于點(diǎn).
(1)求證:是的切線
(2)若,求的長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△OAB中,頂點(diǎn)O(0,0),A(﹣2,3),B(2,3),將△OAB與正方形ABCD組成的圖形繞點(diǎn)O順時(shí)針旋轉(zhuǎn),每次旋轉(zhuǎn)90°,則第2020次旋轉(zhuǎn)結(jié)束時(shí),點(diǎn)D的坐標(biāo)為( 。
A.(﹣2,7)B.(7,2)C.(2,﹣7)D.(﹣7,﹣2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于兩點(diǎn),與軸交于點(diǎn).
求這條拋物線的頂點(diǎn)坐標(biāo);
已知(點(diǎn)在線段上),有一動(dòng)點(diǎn)從點(diǎn)沿線段以每秒個(gè)單位長(zhǎng)度的速度移動(dòng):同時(shí)另一個(gè)點(diǎn)以某一速度從點(diǎn)沿線段移動(dòng),經(jīng)過的移動(dòng),線段被垂直平分,求的值;
在的情況下,拋物線的對(duì)稱軸上是否存在一點(diǎn),使的值最小?若存在,請(qǐng)求出點(diǎn)的坐標(biāo):若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于兩點(diǎn),對(duì)稱軸與軸交于點(diǎn),點(diǎn),點(diǎn),點(diǎn)是平面內(nèi)一動(dòng)點(diǎn),且滿足是線段的中點(diǎn),連結(jié).則線段的最大值是________________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com