【題目】如圖,在△ABC中,AB=AC,AE是∠BAC的平分線,∠ABC的平分線BM交AE于點(diǎn)M,點(diǎn)O在AB上,以點(diǎn)O為圓心,OB的長為半徑的圓經(jīng)過點(diǎn)M,交BC于點(diǎn)G,交AB于點(diǎn)F.
(1)求證:AE為⊙O的切線;
(2)當(dāng)BC=4,AC=6時(shí),求⊙O的半徑;
(3)在(2)的條件下,求線段BG的長.

【答案】
(1)證明:連接OM,如圖1,

∵BM是∠ABC的平分線,

∴∠OBM=∠CBM,

∵OB=OM,

∴∠OBM=∠OMB,

∴∠CBM=∠OMB,

∴OM∥BC,

∵AB=AC,AE是∠BAC的平分線,

∴AE⊥BC,

∴OM⊥AE,

∴AE為⊙O的切線


(2)解:設(shè)⊙O的半徑為r,

∵AB=AC=6,AE是∠BAC的平分線,

∴BE=CE= BC=2,

∵OM∥BE,

∴△AOM∽△ABE,

= ,即 = ,解得r= ,

即設(shè)⊙O的半徑為


(3)解:作OH⊥BE于H,如圖,

∵OM⊥EM,ME⊥BE,

∴四邊形OHEM為矩形,

∴HE=OM= ,

∴BH=BE﹣HE=2﹣ = ,

∵OH⊥BG,

∴BH=HG= ,

∴BG=2BH=1.


【解析】(1)連接OM,如圖1,先證明OM∥BC,再根據(jù)等腰三角形的性質(zhì)判斷AE⊥BC,則OM⊥AE,然后根據(jù)切線的判定定理得到AE為⊙O的切線;(2)設(shè)⊙O的半徑為r,利用等腰三角形的性質(zhì)得到BE=CE= BC=2,再證明△AOM∽△ABE,則利用相似比得到 = ,然后解關(guān)于r的方程即可;(3)作OH⊥BE于H,如圖,易得四邊形OHEM為矩形,則HE=OM= ,所以BH=BE﹣HE= ,再根據(jù)垂徑定理得到BH=HG= ,所以BG=1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市甲、乙兩個(gè)汽車銷售公司,去年一至十月份每月銷售同種品牌汽車的情況如圖所示:

請你根據(jù)上圖填寫下表:

銷售公司

平均數(shù)

方差

中位數(shù)

眾數(shù)

9

9

8

請你從以下兩個(gè)不同的方面對甲、乙兩個(gè)汽車銷售公司去年一至十月份的銷售情況進(jìn)行分析:

從平均數(shù)和方差結(jié)合看;

從折線圖上甲、乙兩個(gè)汽車銷售公司銷售數(shù)量的趨勢看分析哪個(gè)汽車銷售公司較有潛力

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=4cm,∠ADC=120°,點(diǎn)E、F同時(shí)由A、C兩點(diǎn)出發(fā),分別沿AB、CB方向向點(diǎn)B勻速移動(dòng)(到點(diǎn)B為止),點(diǎn)E的速度為1cm/s,點(diǎn)F的速度為2cm/s,經(jīng)過t△DEF為等邊三角形,則t的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y= (x>0)的圖象經(jīng)過矩形OABC對角線的交點(diǎn)M,分別與AB、BC相交于點(diǎn)D、E.若四邊形ODBE的面積為6,則k的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將正方形ABCD放在如圖所示的直角坐標(biāo)系中,A點(diǎn)的坐標(biāo)為(4,0),N點(diǎn)的坐標(biāo)為(3,0),MN平行于y軸,E是BC的中點(diǎn),現(xiàn)將紙片折疊,使點(diǎn)C落在MN上,折痕為直線EF.

(1)求點(diǎn)G的坐標(biāo);

(2)求直線EF的解析式;

(3)設(shè)點(diǎn)P為直線EF上一點(diǎn),是否存在這樣的點(diǎn)P,使以P, F, G的三角形是等腰三角形?若存在,直接寫出P點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將四根長度相等的細(xì)木條首尾相接釘成四邊形ABCD,當(dāng)∠B=90°時(shí),測得AC=4,改變它的形狀使∠B=60°,此時(shí)AC的長度為(
A.
B.2
C.
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上,點(diǎn)表示,現(xiàn)將點(diǎn)沿軸做如下移動(dòng),第一次點(diǎn)向左移動(dòng)個(gè)單位長度到達(dá)點(diǎn),第二次將點(diǎn),向右移動(dòng)個(gè)單位長度到達(dá)點(diǎn),第三次將點(diǎn)向左移動(dòng)個(gè)單位長度到達(dá)點(diǎn),按照這種移動(dòng)規(guī)律移動(dòng)下去,第次移動(dòng)到點(diǎn),如果點(diǎn)與原點(diǎn)的距離等于,那么的值是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)實(shí)驗(yàn)室:

點(diǎn)A、B在數(shù)軸上分別表示有理數(shù)a、b,A、B兩點(diǎn)之間的距離表示為AB,在數(shù)軸上A、B兩點(diǎn)之間的距離AB=|a﹣b|.

利用數(shù)形結(jié)合思想回答下列問題:

(1)數(shù)軸上表示25的兩點(diǎn)之間的距離是_________,數(shù)軸上表示1和-3的兩點(diǎn)之間的距離是 ;

(2)數(shù)軸上若點(diǎn)A表示的數(shù)是x,點(diǎn)B表示的數(shù)是-2,則點(diǎn)AB之間的距離是 ,若AB=2,那么x ;

(3)當(dāng)x 時(shí),代數(shù)式;

(4)若點(diǎn)A表示的數(shù)-1,點(diǎn)B與點(diǎn)A的距離是10,且點(diǎn)B在點(diǎn)A的右側(cè),動(dòng)點(diǎn)P、Q同時(shí)從AB出發(fā)沿?cái)?shù)軸正方向運(yùn)動(dòng),點(diǎn)P的速度是每秒3個(gè)單位長度,點(diǎn)Q的速度是每秒1個(gè)單位長度,求運(yùn)動(dòng)幾秒后,PQ=1?(請寫出必要的求解過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小華和小容都想?yún)⒓訉W(xué)校組織的數(shù)學(xué)興趣小組,根據(jù)學(xué)校分配的名額,他們兩人只能有1人參加.數(shù)學(xué)老師想出了一個(gè)主意:如圖,給他們六張卡片,每張卡片上都有一些數(shù),將化簡后的數(shù)在數(shù)軸上表示出來,再用“<”連接起來,誰先按照要求做對,誰就參加興趣小組,你也一起來試一試吧!

-(-2) (-1)3 -|-3| 0的相反數(shù)

①  、凇   、邸   、

-0.4的倒數(shù)  比-1大2.5的數(shù)

⑤       、

查看答案和解析>>

同步練習(xí)冊答案