【題目】已知:如圖,△ABC中,AD是高,AE平分∠BAC,∠B50°,∠C80°.求∠DAE的度數(shù).

【答案】DAE=15°.

【解析】

根據(jù)三角形的內(nèi)角和定理,可求得∠BAC的度數(shù),由AE是∠BAC的平分線,可得∠EAC的度數(shù),在直角ADC中,可求出∠DAC的度數(shù),所以根據(jù)∠DAE=∠EAC﹣∠DAC即可得出.

解:∵△ABC中,∠B50°,∠C80°,

∴∠BAC180°﹣∠B﹣∠C180°50°80°50°

AE是∠BAC的平分線,

∴∠EACBAC25°,

ADBC邊上的高,

∴在直角ADC中,∠DAC90°﹣∠C90°80°10°,

∴∠DAE=∠EAC﹣∠DAC25°10°15°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,∠A48°,點(diǎn)D、E、F分別在BCAB、AC邊上,且BECF,BDCE,求∠EDF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD,∠ABC=60°,點(diǎn)F為邊AD上一點(diǎn),連接BF交對(duì)角線AC于點(diǎn)G

(1)如圖1,已知CFADF,菱形的邊長(zhǎng)為6,求線段FG的長(zhǎng)度;

(2)如圖2,已知點(diǎn)E為邊AB上一點(diǎn),連接CE交線段BF于點(diǎn)H,且滿足FHC=60°,CH=2BH,求證AHCE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a0)的部分圖象如圖所示,則下列結(jié)論:

①關(guān)于x的一元二次方程ax2+bx+c=0的根是﹣1,3;abc0;a+b=c﹣b;y最大值=c;a+4b=3c中正確的有_____(填寫正確的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)不透明的口袋里裝有分別標(biāo)有漢字”、“”、“”、“的四個(gè)小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先攪拌均勻.

(1)若從中任取一個(gè)球,球上的漢字剛好是的概率為__________.

(2)從中任取一球,不放回,再從中任取一球,請(qǐng)用樹狀圖或列表的方法,求取出的兩個(gè)球上的漢字能組成歷城的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰RtABC中,∠ACB=90°,AB=4,點(diǎn)EAB的中點(diǎn).以AE為邊作等邊ADE(點(diǎn)D與點(diǎn)C分別在AB的異側(cè)),連接CD.則ACD的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著人們經(jīng)濟(jì)收入的不斷提高,汽車已越來越多地進(jìn)入到各個(gè)家庭.某大型超市為緩解停車難問題,建筑設(shè)計(jì)師提供了樓頂停車場(chǎng)的設(shè)計(jì)示意圖.按規(guī)定,停車場(chǎng)坡道口上坡要張貼限高標(biāo)志,以便告知車輛能否安全駛?cè)耄鐖D,地面所在的直線ME與樓頂所在的直線AC是平行的,CD的厚度為0.5m,求出汽車通過坡道口的限高DF的長(zhǎng)(結(jié)果精確到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】王老師將本班的校園安全知識(shí)競(jìng)賽成績(jī)(成績(jī)用s表示,滿分為100分)分為5組,第1組:50≤x<60,第2組:60≤x<70,…,第5組:90≤x<100.并繪制了如圖所示的頻率分布表和頻數(shù)分布直方圖(不完整).

(1)請(qǐng)補(bǔ)全頻率分布表和頻數(shù)分布直方圖;

(2)王老師從第1組和第5組的學(xué)生中,隨機(jī)抽取兩名學(xué)生進(jìn)行談話,求第1組至少有一名學(xué)生被抽到的概率;

(3)設(shè)從第1組和第5組中隨機(jī)抽到的兩名學(xué)生的成績(jī)分別為m、n,求事件“|m﹣n|≤10”的概率.

分組編號(hào)

成績(jī)

頻數(shù)

頻率

1

50≤s<60

0.04

2

60≤s<70

8

0.16

3

70≤s<80

0.4

4

80≤s<90

17

0.34

5

90≤s≤100

3

0.06

合計(jì)

1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線經(jīng)過點(diǎn)A,0),B,0),且與y軸相交于點(diǎn)C

1求這條拋物線的表達(dá)式

2)求∠ACB的度數(shù);

3設(shè)點(diǎn)D是所求拋物線第一象限上一點(diǎn),且在對(duì)稱軸的右側(cè),點(diǎn)E在線段AC上,且DEAC,當(dāng)DCEAOC相似時(shí),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案