【題目】如圖,等邊三角形ABC中,,點(diǎn)D在直線BC上,點(diǎn)E在直線AC上,且,當(dāng)時(shí),則AE的長(zhǎng)為______.
【答案】2或4或或
【解析】
分四種情形分別畫(huà)出圖形,利用全等三角形或相似三角形的性質(zhì)解決問(wèn)題即可.
解:分四種情形:
如圖1中,當(dāng)點(diǎn)D在邊BC上,點(diǎn)E在邊AC上時(shí).
是等邊三角形,
,,
,
≌,
,
.
如圖2中,當(dāng)點(diǎn)D在邊BC上,點(diǎn)E在AC的延長(zhǎng)線上時(shí)作交BC的延長(zhǎng)線于F.
,,
是等邊三角形,設(shè),
,,
∽,
,
,
,
如圖3中,當(dāng)點(diǎn)D在CB的延長(zhǎng)線上,點(diǎn)E在AC的延長(zhǎng)線上時(shí).
,,,
≌,
,
.
如圖4中,當(dāng)點(diǎn)D在CB的延長(zhǎng)線上,點(diǎn)E在邊AC上時(shí)作交BC于F,則是等邊三角形.
設(shè),
由∽,可得,
,
,
,
綜上所述,滿足條件的AE的值為2或4或或.
故答案為2或4或或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四邊形是正方形, 是延長(zhǎng)線上一點(diǎn).直角三角尺的一條直角邊經(jīng)過(guò)點(diǎn),且直角頂點(diǎn)在邊上滑動(dòng)(點(diǎn)不與點(diǎn)重合),另一直角邊與的平分線相交于點(diǎn).
(1)求證: ;
(2)如圖(1),當(dāng)點(diǎn)在邊的中點(diǎn)位置時(shí),猜想與的數(shù)量關(guān)系,并證明你的猜想;
(3)如圖(2),當(dāng)點(diǎn)在邊(除兩端點(diǎn))上的任意位置時(shí),猜想此時(shí)與有怎樣的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】科幻小說(shuō)《實(shí)驗(yàn)室的故事》中,有這樣一個(gè)情節(jié),科學(xué)家把一種珍奇的植物分別放在不同溫度的環(huán)境中,經(jīng)過(guò)一段時(shí)間后,記錄下這種植物高度的增長(zhǎng)情況(如下表):
溫度x/℃ | … | ﹣4 | ﹣2 | 0 | 2 | 4 | 6 | … |
植物每天高度的增長(zhǎng)量y/mm | … | 41 | 49 | 49 | 41 | 25 | 1 | … |
由這些數(shù)據(jù),科學(xué)家推測(cè)出植物每天高度的增長(zhǎng)量y是溫度x的二次函數(shù),那么下列三個(gè)結(jié)論:
①該植物在0℃時(shí),每天高度的增長(zhǎng)量最大;
②該植物在﹣6℃時(shí),每天高度的增長(zhǎng)量能保持在25mm左右;
③該植物與大多數(shù)植物不同,6℃以上的環(huán)境下高度幾乎不增長(zhǎng).
上述結(jié)論中,所有正確結(jié)論的序號(hào)是
A. ①②③ B. ①③ C. ①② D. ②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】山西特產(chǎn)專賣店銷售核桃,其進(jìn)價(jià)為每千克40元,按每千克60元出售,平均每天可售出100千克,后來(lái)經(jīng)過(guò)市場(chǎng)調(diào)查發(fā)現(xiàn),單價(jià)每降低2元,則平均每天的銷售可增加20千克,若該專賣店銷售這種核桃要想平均每天獲利2240元,請(qǐng)回答:
(1)每千克核桃應(yīng)降價(jià)多少元?
(2)在(1)問(wèn)的條件下,平均每天獲利不變,為盡可能讓利于顧客,贏得市場(chǎng),該店應(yīng)按原售價(jià)的幾折出售?
(3)寫(xiě)出每天總利潤(rùn)與降價(jià)元的函數(shù)關(guān)系式,為了使每天的利潤(rùn)最大,應(yīng)降價(jià)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形的邊長(zhǎng).某一時(shí)刻,動(dòng)點(diǎn)從點(diǎn)出發(fā)沿方向以的速度向點(diǎn)勻速運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)從點(diǎn)出發(fā)沿方向以的速度向點(diǎn)勻速運(yùn)動(dòng),問(wèn):
(1)經(jīng)過(guò)多少時(shí)間,的面積等于矩形面積的?
(2)是否存在時(shí)刻t,使以A,M,N為頂點(diǎn)的三角形與相似?若存在,求t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】校園空地上有一面墻,長(zhǎng)度為20m,用長(zhǎng)為32m的籬笆和這面墻圍成一個(gè)矩形花圃,如圖所示.
(1)能圍成面積是126m2的矩形花圃嗎?若能,請(qǐng)舉例說(shuō)明;若不能,請(qǐng)說(shuō)明理由.
(2)若籬笆再增加4m,圍成的矩形花圃面積能達(dá)到170m2嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)分解因式 (直接寫(xiě)出結(jié)果);若是整數(shù),則一定能被一個(gè)常數(shù)整除,這個(gè)常數(shù)的最大值是 .
(2)閱讀,并解決問(wèn)題:
分解因式
解:設(shè),則原式
這樣的解題方法叫做“換元法”,即當(dāng)復(fù)雜的多項(xiàng)式中,某一部分重復(fù)出現(xiàn)時(shí),我們用字母將其替換,從而簡(jiǎn)化這個(gè)多項(xiàng)式.換元法是一個(gè)重要的數(shù)學(xué)方法,不少問(wèn)題能用換元法解決.請(qǐng)你用“換元法”對(duì)下列多項(xiàng)式進(jìn)行因式分解:
①
②
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個(gè)不等實(shí)根.
(1)求實(shí)數(shù)k的取值范圍.
(2)若方程兩實(shí)根滿足|x1|+|x2|=x1·x2,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)場(chǎng)要建一個(gè)飼養(yǎng)場(chǎng)(長(zhǎng)方形ABCD),飼養(yǎng)場(chǎng)的一面靠墻(墻最大可用長(zhǎng)度為27米),另三邊用木欄圍成,中間也用木欄隔開(kāi),分成兩個(gè)場(chǎng)地,并在如圖所示的三處各留1米寬的門(mén)(不用木欄),建成后木欄總長(zhǎng)57米,設(shè)飼養(yǎng)場(chǎng)(長(zhǎng)方形ABCD)的寬為a米.
(1)飼養(yǎng)場(chǎng)的長(zhǎng)為多少米(用含a的代數(shù)式表示).
(2)若飼養(yǎng)場(chǎng)的面積為288m2,求a的值.
(3)當(dāng)a為何值時(shí),飼養(yǎng)場(chǎng)的面積最大,此時(shí)飼養(yǎng)場(chǎng)達(dá)到的最大面積為多少平方米?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com