【題目】如圖,已知:,點、、…在射線上,點、、…在射線上,、、…均為等邊三角形,若,則的邊長為( )
A.6B.12C.16D.32
【答案】C
【解析】
先根據(jù)等邊三角形的各邊相等且各角為60°得:∠B1A1A2=60°,A1B1=A1A2,再利用外角定理求∠OB1A1=30°,則∠MON=∠OB1A1,由等角對等邊得:B1A1=OA1=,得出△A1B1A2的邊長為,再依次同理得出:△A2B2A3的邊長為1,△A3B3A4的邊長為2,△A4B4A5的邊長為:22=4,△A5B5A6的邊長為:23=8,則△A6B6A7的邊長為:24=16.
解:∵△A1B1A2為等邊三角形,
∴∠B1A1A2=60°,A1B1=A1A2,
∵∠MON=30°,
∴∠OB1A1=60°-30°=30°,
∴∠MON=∠OB1A1,
∴B1A1=OA1=,
∴△A1B1A2的邊長為,
同理得:∠OB2A2=30°,
∴OA2=A2B2=OA1+A1A2=+=1,
∴△A2B2A3的邊長為1,
同理可得:△A3B3A4的邊長為2,△A4B4A5的邊長為:22=4,△A5B5A6的邊長為:23=8,則△A6B6A7的邊長為:24=16.
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校初三年200名學(xué)生參加某次測評,從中隨機(jī)抽取了20名學(xué)生,記錄他們的分?jǐn)?shù),整理得到如下頻數(shù)分布直方圖:
Ⅰ從總體的200名學(xué)生中隨機(jī)抽取一人,估計其分?jǐn)?shù)小于70的概率是______;
Ⅱ樣本中分?jǐn)?shù)的中位數(shù)在______組;
Ⅲ已知樣本中有的男生分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等試估計總體中男生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是用4個全等的直角三角形與1個小正方形鑲嵌而成的正方形圖案.已知大正方形面積為49,小正方形面積為4,若用,表示直角三角形的兩直角邊,下列四個說法:①;②;③;④;其中說法正確的是
A. ①②B. ①②③C. ①②④D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A(1,a)是反比例函數(shù)的圖象上一點,直線與反比例函數(shù)的圖象的交點為點B、D,且B(3,﹣1),求:
(1)求反比例函數(shù)的解析式;
(2)求點D坐標(biāo),并直接寫出y1>y2時x的取值范圍;
(3)動點P(x,0)在x軸的正半軸上運動,當(dāng)線段PA與線段PB之差達(dá)到最大時,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知中, , , ,D是AB邊的中點,E是AC邊上一點,聯(lián)結(jié)DE,過點D作交BC邊于點F,聯(lián)結(jié)EF.
(1)如圖1,當(dāng)時,求EF的長;
(2)如圖2,當(dāng)點E在AC邊上移動時, 的正切值是否會發(fā)生變化,如果變化請說出變化情況;如果保持不變,請求出的正切值;
(3)如圖3,聯(lián)結(jié)CD交EF于點Q,當(dāng)是等腰三角形時,請直接寫出BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OB平分∠CBA,CO平分∠ACB,且MN∥BC,設(shè)AB=12,BC=24,AC=18,則△AMN的周長為( )
A.30 B.33 C.36 D.39
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,平面直角坐標(biāo)系中,A在x軸正半軸,B(0,1),∠OAB=30°.
(1)如圖1,已知AB=2.點C在y軸的正半軸上,當(dāng)△ABC為等腰三角形時,直接寫出點C的坐標(biāo)為 ;
(2)如圖2,以AB為邊作等邊△ABE,AD⊥AB交OA的垂直平分線于D,求證:BD=OE;
(3)如圖3,在(2)的條件下,連接DE交AB于F,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列結(jié)論中:①有三個角是的三角形是等邊三角形;②有一個外角是的等腰三角形是等邊三角形;③有一個角是,且是軸對稱的三角形是等邊三角形;④有一腰上的高也是這腰上的中線的等腰三角形是等邊三角形.其中正確的是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC為弦,∠BAC的平分線交⊙O于點D,過點D的切線交AC的延長線于點E.
求證:(1)DE⊥AE;
(2)AE+CE=AB.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com