【題目】如圖,AB是⊙O的直徑,AC為弦,∠BAC的平分線交⊙O于點D,過點D的切線交AC的延長線于點E.
求證:(1)DE⊥AE;
(2)AE+CE=AB.
【答案】證明見解析
【解析】
(1)連接OD,根據(jù)等腰三角形的性質(zhì)結(jié)合角平分線的性質(zhì)可得出∠CAD=∠ODA,利用“內(nèi)錯角相等,兩直線平行”可得出AE∥OD,結(jié)合切線的性質(zhì)即可證出DE⊥AE;
(2)過點D作DM⊥AB于點M,連接CD、DB,根據(jù)角平分線的性質(zhì)可得出DE=DM,結(jié)合AD=AD、∠AED=∠AMD=90°即可證出△DAE≌△DAM(SAS),根據(jù)全等三角形的性質(zhì)可得出AE=AM,由∠EAD=∠MAD可得出,進(jìn)而可得出CD=BD,結(jié)合DE=DM可證出Rt△DEC≌Rt△DMB(HL),根據(jù)全等三角形的性質(zhì)可得出CE=BM,結(jié)合AB=AM+BM即可證出AE+CE=AB.
(1)連接OD,如圖1所示.
∵OA=OD,AD平分∠BAC,
∴∠OAD=∠ODA,∠CAD=∠OAD,
∴∠CAD=∠ODA,
∴AE∥OD.
∵DE是⊙O的切線,
∴∠ODE=90°,
∴OD⊥DE,
∴DE⊥AE.
(2)過點D作DM⊥AB于點M,連接CD、DB,如圖2所示.
∵AD平分∠BAC,DE⊥AE,DM⊥AB,
∴DE=DM.
在△DAE和△DAM中,,
∴△DAE≌△DAM(SAS),
∴AE=AM.
∵∠EAD=∠MAD,
∴ ,
∴CD=BD.
在Rt△DEC和Rt△DMB中,,
∴Rt△DEC≌Rt△DMB(HL),
∴CE=BM,
∴AE+CE=AM+BM=AB.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:,點、、…在射線上,點、、…在射線上,、、…均為等邊三角形,若,則的邊長為( )
A.6B.12C.16D.32
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一個坡角為30°的斜坡上有一電線桿AB,當(dāng)太陽光與水平線成45°角時,測得該桿在斜坡上的影長BC為20m.求電線桿AB的高(精確到0.1m,參考數(shù)值:≈1.73,≈1.41).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】證明命題“對角線相等的平行四邊形是矩形”,要根據(jù)題意,畫出圖形,并用符號表示已知和求證,寫出證明過程,下面是小張同學(xué)根據(jù)題意畫出的圖形,并寫出了不完整的已知和求證.
已知:如圖,ABCD是平行四邊形,AC與BD是對角線,且 .
求證: .
請你補全已知和求證,并寫出證明過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)之道在于悟,希望同學(xué)們在問題(1)解決過程中有所感悟,再繼續(xù)探索研究問題(2)(3).
(1)如圖①,D在線段BC上,∠B=∠C=∠ADE,AD=DE.求證:△ABD≌△DCE.
(2)如圖②,△ABC是等腰直角三角形,∠ACB=90°,AC=BC=4,在CB的延長線上有一動點D,連接AD,以AD為直角邊作等腰直角三角形ADE(∠ADE=90°,AD=DE ),連接EB并延長,與AC的延長線交于點F.當(dāng)動點D在運動過程中,CF的長度是否會發(fā)生變化,如果變化,請說明理由;如果不變,請求出CF的長.
(3)如圖③,射線AM與BN,MA⊥AB,NB⊥AB,點P是AB上一點, PA=1,PB=2,在射線AM與BN上分別作點C、點D,滿足△CPD為等腰直角三角形.則△CPD的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,輪船從A港出發(fā),以28海里/小時的速度向正北方向航行,此時測的燈塔M在北偏東30°的方向上.半小時后,輪船到達(dá)B處,此時測得燈塔M在北偏東60°的方向上.
(1)求輪船在B處時與燈塔M的距離;
(2)輪船從B處繼續(xù)沿正北方向航行,又經(jīng)半小時后到達(dá)C處.求:此時輪船與燈塔M的距離是多少?燈塔M在輪船的什么方向上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點經(jīng)過某種變換后得到點,我們把點叫做點的終結(jié)點.已知點的終結(jié)點為,點的終結(jié)點為,點的終結(jié)點為,這樣依次得到、、、…,若點的坐標(biāo)為,則點的坐標(biāo)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,BC=2.點P從點A出發(fā)沿沿射線AB以1的速度運動,過點P作PE∥BC交射線AC于點E,同時點Q從點C出發(fā)沿BC的延長線以1的速度運動,連結(jié)BE、EQ.設(shè)點P的運動時間為t().
(1)求證:△APE是等邊三角形;
(2)直接寫出CE的長(用含的代數(shù)式表示);
(3)當(dāng)點P在邊AB上,且不與點A、B重合時,求證:△BPE≌△ECQ.
(4)在不添加字母和連結(jié)其它線段的條件下,當(dāng)圖中等腰三角形的個數(shù)大于3時,直接寫出t的值和對應(yīng)的等腰三角形的個數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+4的圖象與x軸交于點B(-2,0),點C(8,0),與y軸交于點A.
(1)求二次函數(shù)y=ax2+bx+4的表達(dá)式;
(2)連接AC,AB,若點N在線段BC上運動(不與點B,C重合),過點N作NM∥AC,交AB于點M,當(dāng)△AMN面積最大時,求N點的坐標(biāo);
(3)連接OM,在(2)的結(jié)論下,求OM與AC的數(shù)量關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com