【題目】如圖,在平面直角坐標(biāo)系中,拋物線x軸交于AB兩點(diǎn),與y軸交于C點(diǎn),B點(diǎn)與C點(diǎn)是直線yx3x軸、y軸的交點(diǎn).D為線段AB上一點(diǎn).

1)求拋物線的解析式及A點(diǎn)坐標(biāo).

2)若點(diǎn)D在線段OB上,過D點(diǎn)作x軸的垂線與拋物線交于點(diǎn)E,求出點(diǎn)E到直線BC的距離的最大值.

3D為線段AB上一點(diǎn),連接CD,作點(diǎn)B關(guān)于CD的對稱點(diǎn)B,連接AB、BD

當(dāng)點(diǎn)B落坐標(biāo)軸上時,求點(diǎn)D的坐標(biāo).

在點(diǎn)D的運(yùn)動過程中,ABD的內(nèi)角能否等于45°,若能,求此時點(diǎn)B的坐標(biāo);若不能,請說明理由.

【答案】1,A(﹣20);(2EBC的最大距離為;(3D10,0);D23,0);B坐標(biāo)為(03)或(-3)或()或(﹣,).

【解析】

1)求出BC兩點(diǎn)的坐標(biāo),代入拋物線解析式即可得出答案;

2)設(shè)E點(diǎn)橫坐標(biāo)為m,則Fm,m3),過點(diǎn)EEHBC于點(diǎn)H,EFyFyE,利用二次函數(shù)的性質(zhì)可求出E到直線BC的距離的最大值;

3)①點(diǎn)B′在以C為圓心,CB為半徑的圓C上.所以滿足條件的B′有兩個,分別位于y軸、x軸,結(jié)合對稱的性質(zhì)解答即可;

②分不同的情況進(jìn)行討論:

(Ⅰ)當(dāng)點(diǎn)B′位于y軸上,易得點(diǎn)B′的坐標(biāo);

(Ⅱ)如圖3,連接CB′,構(gòu)造菱形DB′CB,根據(jù)菱形的性質(zhì)求得B′3,3);

(Ⅲ)∠B′AD45°,如圖4,連接CB′,過點(diǎn)B′分別作坐標(biāo)軸的垂線,垂足為E、F,在直角CFB′中,由勾股定理知m2+(5m2=(32,解出m即可;

(Ⅳ)如圖5,∠AB′D45°,連接CB’,過點(diǎn)B′y軸的垂線,垂足為點(diǎn)F,由軸對稱性質(zhì)可得當(dāng)∠AB′D45°時,點(diǎn)A在線段CB′上,結(jié)合勾股定理求得m的值,進(jìn)而求得符合條件的點(diǎn)B′的坐標(biāo).

1)∵B點(diǎn)與C點(diǎn)是直線yx3x軸、y軸的交點(diǎn).

B3,0),C0,﹣3),

,解得:,

∴拋物線的解析式為,

y0,則,

解得x1=﹣2x23,

A(﹣2,0);2)設(shè)E點(diǎn)到直線BC的距離為d,E點(diǎn)橫坐標(biāo)為m,Fm,m3),

B3,0),C0,﹣3),

∴∠OBC45°,

如圖1,過點(diǎn)EEHBC于點(diǎn)H,

EFH為等腰直角三角形,

EH,

EFyFyEm3(),

0≤m≤3),

,

當(dāng)時,EF的最大值為,

dEF

EBC的最大距離為;

3)①點(diǎn)B′在以C為圓心,CB為半徑的圓C上;

(Ⅰ)當(dāng)B′點(diǎn)落在x軸上時,D10,0);

(Ⅱ)當(dāng)B′點(diǎn)落在y軸上時,如圖2CB′CB3,

∵∠OB′D45°

ODOB’33,

;

②分別畫出圖形進(jìn)行討論求解:

(Ⅰ)∠B′DA45°時,如圖2,OB′33B′0,33

(Ⅱ)如圖3,連接CB′,∠B′DA=∠CBD45°

DB′BC,可得四邊形DB′CB是菱形,

B′(﹣3,﹣3).

(Ⅲ)∠B′AD45°,如圖4,連接CB′,過點(diǎn)B′分別作坐標(biāo)軸的垂線,垂足為E、F

設(shè)線段FB’的長為m,B′EAE2m,可得CF5m,

在直角三角形CFB’中,m2+5m2=(32,

解得m

B′),

(Ⅳ)如圖5,∠AB′D45°,連接CB’,過點(diǎn)B′y軸的垂線,垂足為點(diǎn)F,

由軸對稱性質(zhì)可得,∠CB′D=∠CBD45°,所以當(dāng)∠AB′D45°時,點(diǎn)A在線段CB′上,

,

設(shè)線段FB′的長為2mFC3m,(2m2+3m2

解得:m,B′,

綜合以上可得B′坐標(biāo)為(0,)或或()或

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形 ABCD 中,過點(diǎn) A AEDC DC 的延長線于點(diǎn) E,過點(diǎn) D DF // EA BA 的延長線于點(diǎn) F

1)求證:四邊形 AEDF 是矩形;

2)連接BD,若 AB=AE=2,tan FAD ,求 BD 的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠A=30°,直線a∥b,頂點(diǎn)C在直線b上,直線aAB于點(diǎn)D,交AC于點(diǎn)E,若∠1=145°,則∠2的度數(shù)是( )

A.30°B.35°C.40°D.45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小聰對函數(shù)的圖象和性質(zhì)進(jìn)行了探究.已知當(dāng)自變量的值為04時,函數(shù)值都為-3,當(dāng)自變量的值為-15時,函數(shù)值為2

探究過程如下,請補(bǔ)充完整.

1)這個函數(shù)的表達(dá)式為 ;

2)在給出的平面直角坐標(biāo)系中,畫出這個函數(shù)的圖象并寫出這個函數(shù)的一條性質(zhì): ;

3)進(jìn)一步探究函數(shù)圖象并解決問題:

①直線與函數(shù)4個解,則k的取值范圍為 ;

②已知函數(shù)的圖象如圖所示,結(jié)合你所畫的函數(shù)圖象,寫出不等式的解集:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)下列條件,求二次函數(shù)的解析式.

1)圖象經(jīng)過(0,1),(1,﹣2),(2,3)三點(diǎn);

2)圖象的頂點(diǎn)(23),且經(jīng)過點(diǎn)(3,1);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)和點(diǎn)在拋物線上.

(Ⅰ)求該拋物線的解析式和頂點(diǎn)坐標(biāo),并求出的值;

(Ⅱ)求點(diǎn)關(guān)于軸對稱點(diǎn)的坐標(biāo),并在軸上找一點(diǎn),使得最短,求此時點(diǎn)的坐標(biāo);

(Ⅲ)平移拋物線,記平移后點(diǎn)的對應(yīng)點(diǎn)為,點(diǎn)的對應(yīng)點(diǎn)為,點(diǎn)軸上的定點(diǎn).

①當(dāng)拋物線向左平移到某個位置時,最短,求此時拋物線的解析式;

軸上的定點(diǎn),當(dāng)拋物線向左平移到某個位置時,四邊形的周長最短,求此時拋物線的解析式(直接寫出結(jié)果即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】大學(xué)生小李和同學(xué)一起自主創(chuàng)業(yè)開辦了一家公司,公司對經(jīng)營的盈虧情況在每月的最后一天結(jié)算一次.112月份中,該公司前x個月累計獲得的總利潤y(萬元)與銷售時間x(月)之間滿足二次函數(shù)關(guān)系.

1)求yx函數(shù)關(guān)系式.

2)該公司從哪個月開始扭虧為盈(當(dāng)月盈利)? 直接寫出9月份一個月內(nèi)所獲得的利潤.

3)在前12 個月中,哪個月該公司所獲得利潤最大?最大利潤為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了鼓勵市民節(jié)約用電,某市對居民用電實(shí)行“階梯收費(fèi)”(總電費(fèi)=第一階梯電費(fèi)+第二階梯電費(fèi)).規(guī)定:用電量不超過200度按第一階梯電價收費(fèi),超過200度的部分按第二階梯電價收費(fèi),如圖是張磊家20182月和3月所交電費(fèi)的收據(jù).

1)該市規(guī)定的第一階梯電價和第二階梯電價單價分別為多少?

2)張磊家4月份家庭支出計劃中電費(fèi)為160元,他家最大用電量為多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了測量學(xué)校附近新蓋大樓的高度,數(shù)學(xué)實(shí)踐活動小組,借助大樓旁邊高30米的空中操場進(jìn)行測量.其中米,地面,小華站在操場的處觀測大樓頂點(diǎn)的仰角為、大樓底端的俯角為,請根據(jù)題中的信息求出大樓的高度.

查看答案和解析>>

同步練習(xí)冊答案