【題目】為了測量學(xué)校附近新蓋大樓的高度,數(shù)學(xué)實(shí)踐活動(dòng)小組,借助大樓旁邊高30米的空中操場進(jìn)行測量.其中米,地面,小華站在操場的處觀測大樓頂點(diǎn)的仰角為、大樓底端的俯角為,請根據(jù)題中的信息求出大樓的高度.

【答案】

【解析】

延長EACD交于點(diǎn)G,連接AC,AD,由條件可得∠CAG=60°,∠DAG=30°,在RtADG中,可得AG=DG=AB=m,然后再RtACG中,CG=AG,即可得出答案.

如圖所示,延長EACD交于點(diǎn)G,連接AC,AD

由條件可得∠CAG=60°,∠DAG=30°,DG=AB=30m

RtADG中,tanDAG==tan30°,

AG=DG=m

RtACG中,tanCAG==tan60°,

CG=

CD=CG+DG=90+30=120m

答:大樓的高度為120m

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),B點(diǎn)與C點(diǎn)是直線yx3x軸、y軸的交點(diǎn).D為線段AB上一點(diǎn).

1)求拋物線的解析式及A點(diǎn)坐標(biāo).

2)若點(diǎn)D在線段OB上,過D點(diǎn)作x軸的垂線與拋物線交于點(diǎn)E,求出點(diǎn)E到直線BC的距離的最大值.

3D為線段AB上一點(diǎn),連接CD,作點(diǎn)B關(guān)于CD的對稱點(diǎn)B,連接AB、BD

當(dāng)點(diǎn)B落坐標(biāo)軸上時(shí),求點(diǎn)D的坐標(biāo).

在點(diǎn)D的運(yùn)動(dòng)過程中,ABD的內(nèi)角能否等于45°,若能,求此時(shí)點(diǎn)B的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)開展一起閱讀,共同成長課外讀書周活動(dòng),活動(dòng)后期隨機(jī)調(diào)查了八年級部分學(xué)生一周的課外閱讀時(shí)間,并將結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖,請你根據(jù)統(tǒng)計(jì)圖的信息回答下列問題:

1)本次調(diào)查的學(xué)生總數(shù)為______人,在扇形統(tǒng)計(jì)圖中,課外閱讀時(shí)間為5小時(shí)的扇形圓心角度數(shù)是______;

2)請你補(bǔ)全條形統(tǒng)計(jì)圖;

3)若全校八年級共有學(xué)生人,估計(jì)八年級一周課外閱讀時(shí)間至少為小時(shí)的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),的邊垂直于軸,垂足為B,反比例函數(shù)的圖象經(jīng)過AO上的點(diǎn)C,且,與邊AB相交于點(diǎn)D,

1)求點(diǎn)C的橫坐標(biāo);

2)求反比例函數(shù)的解析式;

3)求經(jīng)過C,D兩點(diǎn)的一次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在現(xiàn)實(shí)生活中,我們會(huì)看到許多“標(biāo)準(zhǔn)”的矩形,如我們的課本封面、A4的打印紙等,其實(shí)這些矩形的長與寬之比都為:1,我們不妨就把這樣的矩形稱為“標(biāo)準(zhǔn)矩形”,在“標(biāo)準(zhǔn)矩形”ABCD中,P為DC邊上一定點(diǎn),且CP=BC,如圖所示.

(1)如圖,求證:BA=BP;

(2)如圖,點(diǎn)Q在DC上,且DQ=CP,若G為BC邊上一動(dòng)點(diǎn),當(dāng)AGQ的周長最小時(shí),求的值;

(3)如圖,已知AD=1,在(2)的條件下,連接AG并延長交DC的延長線于點(diǎn)F,連接BF,T為BF的中點(diǎn),M、N分別為線段PF與AB上的動(dòng)點(diǎn),且始終保持PM=BN,請證明:MNT的面積S為定值,并求出這個(gè)定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題提出:

1)如圖1,在四邊形中,已知:,,,的面積為8,求邊上的高.

問題探究

2)如圖2在(1)的條件下,點(diǎn)邊上一點(diǎn),且,,連接,求的面積

問題解決

3)如圖3,在(1)的條件下,點(diǎn)邊上任意一點(diǎn),連接、,若的面積是否存在最小值;若存在,求出最小值;若不存在;請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于反比例函數(shù),下列說法正確的個(gè)數(shù)是(

①函數(shù)圖象位于第一、三象限;②函數(shù)值 y x 的增大而減。虎廴 A(-1, ),B2,),C(1,)是圖象上三個(gè)點(diǎn),則 <<;④P 為圖象上任一點(diǎn),過 P PQy 軸于點(diǎn) Q,則OPQ 的面積是定值.

A.1 個(gè)B.2 個(gè)C.3 個(gè)D.4 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,為線段上任一點(diǎn),作交線段,當(dāng)的長最大時(shí),點(diǎn)的坐標(biāo)為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB4,BC6,過對角線交點(diǎn)OEFACAD于點(diǎn)E,交BC于點(diǎn)F,則DE的長是(  )

A.1B.C.2D.

查看答案和解析>>

同步練習(xí)冊答案