【題目】已知一次函數(shù)的圖像經(jīng)過點M(-1,3)、N(1,5)。直線MN與坐標(biāo)軸相交于點A、B兩點.
(1)求一次函數(shù)的解析式.
(2)如圖,點C與點B關(guān)于x軸對稱,點D在線段OA上,連結(jié)BD,把線段BD順時針方向旋轉(zhuǎn)90°得到線段DE,作直線CE交x軸于點F,求的值.
(3)如圖,點P是直線AB上一動點,以OP為邊作正方形OPNM,連接ON、PM交于點Q,連BQ,當(dāng)點P在直線AB上運動時,的值是否會發(fā)生變化,若不變,請求出其值;若變化,請說明理由.
【答案】(1)y=x+4.(2);(3)不變,.
【解析】
試題(1)用待定系數(shù)法,將M,N兩點坐標(biāo)代入解析式求出k,b即得一次函數(shù)解析式;(2)∵點C與點B關(guān)于x軸對稱,B(0,4),∴C(0,-4),再由旋轉(zhuǎn)性質(zhì)可得DB=DE,∠BDE=90,過點E作EP⊥x軸于P,易證△BDO≌△DEP,∴OD=PE,DP=BO=4,設(shè)D(,0),則E(,),設(shè)直線CE解析式是:y=kx+b,把C,E兩點坐標(biāo)代入得:,∴,∴CE解析式是y=x-4,∴F(4,0),OC=OF=4,∴PE=PF,∴EF=,∵A(-4,0),∴DF=4+a,DA=4-a,∴===;(3)此題連接BM,因為AO=BO,MO=PO,且∠BOM=∠AOP,得出△BOM≌△AOP(SAS),∵∠PAO=135,∴∠MBP=∠PAO=135,∴∠MBP=90°,在Rt△MBP中,MQ=PQ,∴BQ是此直角三角形斜邊中線,等于斜邊一半,BQ=MP,MP又是正方形對角線,∴MP=OP,∴BQ:OP=MP:OP=×OP:OP=,∴的值不變,是.
試題解析:(1)用待定系數(shù)法,將M,N兩點坐標(biāo)代入解析式得:,解得b=4,k=1,∴一次函數(shù)的解析式是y=x+4;(2)∵點C與點B關(guān)于x軸對稱,B(0,4),∴C(0,-4),再由旋轉(zhuǎn)性質(zhì)可得DB=DE,∠BDE=90,過點E作EP⊥x軸,易證△BDO≌△DEP,設(shè)D(,0),則E(,)設(shè)直線CE解析式是:y=kx+b,,把C,E兩點坐標(biāo)代入得:,∴∴CE解析式:y=x-4,y=0時,,x=4,∴F(4,0),OC=OF=4,∴PE=PF,∴EF=,∵A(-4,0),∴DF=4+a,DA=4-a,
∴===.∴的值是.
(3)連結(jié)BM,由正方形性質(zhì)可得OM=OP,∠MOP=90,由A,B點坐標(biāo)可得AO=BO,又∵∠BOM=∠AOP(同角的余角相等),可證△BOM≌△AOP(SAS),∴∠MBO=∠PAO=180-45=135°,∴∠MBP=135-45=90°,在Rt△MBP中,MQ=PQ,BQ是此直角三角形斜邊中線,等于斜邊一半,∴BQ=MP;在Rt△MOP中,,MP=OP;∴BQ:OP=MP:OP=×OP:OP=,當(dāng)點P在直線AB上運動時,的值不變,是,∴
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某圖書館計劃選購甲、乙兩種圖書.甲圖書每本價格是乙圖書每本價格的2.5倍,如果用900元購買圖書,則單獨購買甲圖書比單獨購買乙圖書要少18本.
(1)甲、乙兩種圖書每本價格分別為多少元?
(2)如果該圖書館計劃購買乙圖書的本數(shù)比購買甲圖書本數(shù)的2倍多8本,且用于購買甲、乙兩種圖書的總費用不超過1725元,那么該圖書館最多可以購買多少本乙圖書?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】暑假期間,商洛劇院舉行專場音樂會,成人票每張20元,學(xué)生票每張5元,為了吸引廣大師生來聽音樂會,劇院制定了兩種優(yōu)惠方案:
方案一:購買一張成人票贈送一張學(xué)生票;
方案二:成人票和學(xué)生票都打九折.
我,F(xiàn)有4名老師與若干名(不少于4人)學(xué)生聽音樂會.
(1)設(shè)學(xué)生人數(shù)為(人),付款總金額為(元),請分別確定兩種優(yōu)惠方案中與的函數(shù)關(guān)系式;
(2)請你結(jié)合參加聽音樂會的學(xué)生人數(shù),計算說明怎樣購票花費少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的方程的解也是關(guān)于的方程的解.
(1)求、的值;
(2)若線段,在直線AB上取一點P,恰好使,點Q是PB的中點,求線段AQ的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,∠BAD的平分線交BC于點E,交DC的延長線于點F.
(1)若AB=2,AD=3,求EF的長;
(2)若G是EF的中點,連接BG和DG,求證:DG=BG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把下列各數(shù)分別填在相應(yīng)的集合里:
整數(shù){ …},
正數(shù){ …},
非負(fù)數(shù){ …},
分?jǐn)?shù){ …},
正有理數(shù){ …}。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一個直角三角形紙片ABO放置在平面直角坐標(biāo)系中,點A(,0),點B(0,1),點O(0,0).P是邊AB上的一點(點P不與點A,B重合),沿著OP折疊該紙片,得點A的對應(yīng)點A',當(dāng)∠BPA'=30°時,點P的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解市民“獲取新聞的最主要途徑”,某市記者開展了一次抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計圖:
根據(jù)以上信息解答下列問題:
(1)這次接受調(diào)查的市民總?cè)藬?shù)是______;
(2)扇形統(tǒng)計圖中,“電視”所對應(yīng)的圓心角的度數(shù)是______;
(3)請補全條形統(tǒng)計圖.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com