【題目】甲列車速度是60km/h,乙列車速度是90km/h.

(1)兩列車都從某地出發(fā),目的地距離出發(fā)點(diǎn)1000km,甲列車先走2小時,問乙列車什么時候能追上甲列車?追上時離目的地還有多遠(yuǎn)?

(2)甲列車從A地開往B地,乙列車同時從B地開往A地,已知A,B兩地相距200km,兩車相遇的地方離A地多遠(yuǎn)?(用方程)

【答案】(1)乙列車經(jīng)過4小時能追上甲列車,追上時離目的地還有640km;(2)兩車相遇的地方離A地80km.

【解析】

(1)設(shè)乙列車經(jīng)過x小時追上甲列車,根據(jù)行駛的路程相等即可列出關(guān)于x的方程,然后求解方程即可,再用總路程減去行駛的路程即可得到與目的地的距離;

(2)設(shè)兩車相遇時間為y小時,根據(jù)兩次所行駛的路程和等于總路程可列出關(guān)于y的方程,然后求解方程即可,再用甲的速度×?xí)r間即可得解.

(1)設(shè)乙列車經(jīng)過x小時追上甲列車,由題意得,

90x﹣60x=60×2,

解得:x=4,

1000﹣90×4=640km.

答:乙列車經(jīng)過4小時能追上甲列車,追上時離目的地還有640km;

(2)設(shè)兩車相遇時間為y小時,由題意得,

90y+60y=200,

解得:y=,

60y=80.

答:兩車相遇的地方離A80km.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的運(yùn)算流程中,

(1)若輸入的數(shù)x=﹣4,則輸出的數(shù)y=   ;

(2)若輸出的數(shù)y=5,則輸入的數(shù)x=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=CD,BF=DE,AEBD,CFBD,垂足分別為E,F(xiàn).

(1)求證:ABE≌△CDF;

(2)若AC與BD交于點(diǎn)O,求證:AO=CO.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:像、、兩個含有二次根式的代數(shù)式相乘,積不含有二次根式,我們稱這兩個代數(shù)式互為有理化因式例如,、等都是互為有理化因式在進(jìn)行二次根式計算時,利用有理化因式,可以化去分母中的根號.

例如;

解答下列問題:

(1)________互為有理化因式,將分母有理化得________;

(2)計算:;

(3)己知有理數(shù)a、b滿足,求a、b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(
A.擲一枚質(zhì)地均勻的正方體骰子,骰子停止轉(zhuǎn)動后,5點(diǎn)朝上是必然事件
B.審查書稿中有哪些學(xué)科性錯誤適合用抽樣調(diào)查法
C.甲乙兩人在相同條件下各射擊10次,他們的成績的平均數(shù)相同,方差分別是S2=0.4,S2=0.6,則甲的射擊成績較穩(wěn)定
D.擲兩枚質(zhì)地均勻的硬幣,“兩枚硬幣都是正面朝上”這一事件發(fā)生的概率為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,BE平分∠ABC,交AD于點(diǎn)E,AB=3cm,ED=cm,則平行四邊形ABCD的周長是_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某餐廳中,一張桌子可以坐6人,如果把多張桌子擺在一起,可以有以下兩種擺放方式.

(1)當(dāng)有5張桌子時,第一種擺放方式能坐  人,第二種擺放方式能坐  人,

(2)當(dāng)有n張桌子時,第一種擺放方式能坐  人,第二種擺放方式能坐  人,

(3)一天中午餐廳要接待98位顧客共同就餐(即桌子要擺在一起),但餐廳只有25張這樣的餐桌,若你是這個餐廳的經(jīng)理,你打算選擇哪種方式來擺放餐桌?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在學(xué)完“有理數(shù)的運(yùn)算”后,某中學(xué)七年級各班各選出5名學(xué)生組成一個代表隊,在數(shù)學(xué)方老師的組織下進(jìn)行一次知識競賽,競賽規(guī)則是:每隊都分別給出50道題,答對一題得3分,不答或答錯一題倒扣1分

(1)如果2班代表隊最后得分142分,那么2班代表隊回答對了多少道題?

(2)1班代表隊的最后得分能為145分嗎?請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程(x﹣3)(x﹣2)﹣p2=0.
(1)求證:無論p取何值時,方程總有兩個不相等的實(shí)數(shù)根;
(2)設(shè)方程兩實(shí)數(shù)根分別為x1 , x2 , 且滿足x12+x22=3x1x2 , 求實(shí)數(shù)p的值.

查看答案和解析>>

同步練習(xí)冊答案