【題目】如圖,AB是⊙O的弦,過(guò)AB的中點(diǎn)EECOA,垂足為C,過(guò)點(diǎn)B作直線BDCE的延長(zhǎng)線于點(diǎn)D,使得DB=DE.

(1)求證:BD是⊙O的切線;

(2)若AB=12,DB=5,求AOB的面積.

【答案】(1)證明見(jiàn)解析;(2)27.

【解析】1)根據(jù)等腰三角形的性質(zhì)和切線的判定方法可以求得∠OBD的度數(shù),從而可以證明結(jié)論成立;

(2)要求△AOB的面積只要求出OE的長(zhǎng)即可,根據(jù)題目中的條件和三角形相似的知識(shí)可以求得OE的長(zhǎng),從而可以解答本題.

(1)OA=OB,DB=DE,

∴∠A=OBA,DEB=DBE,

ECOA,DEB=AEC,

∴∠A+DEB=90°,

∴∠OBA+DBE=90°,

∴∠OBD=90°,

OB是圓的半徑,

BD是⊙O的切線;

(2)過(guò)點(diǎn)DDFAB于點(diǎn)F,連接OE,

∵點(diǎn)EAB的中點(diǎn),AB=12,

AE=EB=6,OEAB,

又∵DE=DB,DFBE,DB=5,DB=DE,

EF=BF=3,

DF==4,

∵∠AEC=DEF,

∴∠A=EDF,

OEAB,DFAB,

∴∠AEO=DFE=90°,

∴△AEO∽△DFE,

,得EO=4.5,

∴△AOB的面積是:=27.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,∠ABC=∠ACB,點(diǎn)D、E分別是ACAB上兩點(diǎn),且ADAECEBD交于點(diǎn)O

求證:OBOC;

連接ED,若EDEB,試說(shuō)明BD平分∠ABC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AC=BC,∠ACB=90°MAB邊上的中點(diǎn),點(diǎn)D、E分別是AC、BC邊上的動(dòng)點(diǎn),連接DM 、ME、CM、DE, DECM相交于點(diǎn)F且∠DME=90°.則下列5個(gè)結(jié)論: (1)圖中共有兩對(duì)全等三角形;(2)DEM是等腰三角形; (3)CDM=CFE(4)AD2+BE2=DE2;(5)四邊形CDME的面積發(fā)生改變.其中正確的結(jié)論有( )個(gè).

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列解題過(guò)程:

===-2

==

請(qǐng)回答下列問(wèn)題:

1)觀察上面的解題過(guò)程,請(qǐng)直接寫(xiě)出式子=   

2)觀察上面的解題過(guò)程,請(qǐng)直接寫(xiě)出式子=   ;

3)利用上面所提供的解法,請(qǐng)求+···+的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABOC是正方形,點(diǎn)A的坐標(biāo)為(1,1),是以點(diǎn)B為圓心,BA為半徑的圓。是以點(diǎn)O為圓心,OA1為半徑的圓弧,是以點(diǎn)C為圓心,CA2為半徑的圓弧,是以點(diǎn)A為圓心,AA3為半徑的圓弧,繼續(xù)以點(diǎn)B、O、C、A為圓心按上述作法得到的曲線AA1A2A3A4A5稱為正方形的漸開(kāi)線,那么點(diǎn)A5的坐標(biāo)是______,點(diǎn)A2018的坐標(biāo)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方形ABCD中,E為對(duì)角線BD上一點(diǎn),過(guò)E點(diǎn)作EF⊥BD交BC于F,連接DF,G為DF中點(diǎn),連接EG,CG.

(1)求證:EG=CG且EG⊥CG;

(2)將圖①中△BEF繞B點(diǎn)逆時(shí)針旋轉(zhuǎn)45,如圖②所示,取DF中點(diǎn)G,連接EG,CG.問(wèn)(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由.

(3)將圖①中△BEF繞B點(diǎn)旋轉(zhuǎn)任意角度,如圖③所示,再連接相應(yīng)的線段,問(wèn)(1)中的結(jié)論是否仍然成立?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊三角形ABC中,P為BC上一點(diǎn),D為AC上一點(diǎn),且∠APD=60°,BP=1,CD=,則△ABC的邊長(zhǎng)為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,將一塊等腰直角三角板ABC放在第一象限,斜靠在兩條坐標(biāo)軸上,∠ACB=900,且A0,4),點(diǎn)C2,0),BE⊥x軸于點(diǎn)E,一次函數(shù)y=x+b經(jīng)過(guò)點(diǎn)B,交y軸于點(diǎn)D

1求證;△AOC≌△CEB

2△ABD的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知 三角形ABC各頂點(diǎn)在格點(diǎn)上

1)直接寫(xiě)出三角形ABC的三個(gè)頂點(diǎn)的坐標(biāo)

A   B   C   ;

2)畫(huà)出三角形ABC關(guān)于y軸對(duì)稱的三角形A′B′C′.

3)求三角形ABC的面積;

4)直接與出A′C′y軸交點(diǎn)的坐標(biāo)   

查看答案和解析>>

同步練習(xí)冊(cè)答案